I’m generally interested in the application of machine learning to computational problems in physics, particularly within the context of high performance computing. My current research focuses on using deep generative modeling to help build better sampling algorithms in lattice gauge theory. In particular, I’m interested in building gauge equivariant neural network architectures and using inductive priors to incorporate physical symmetries into machine learning models.
---title: ""subtitle: ""title-block-style: nonedate: 2021-11-24date-modified: 2023-05-12author: name: Sam Foreman url: https://samforeman.me affiliation: Argonne National Laboratory affiliation-url: https://alcf.anl.gov/about/people/sam-foreman---# About MeI'm currently an [Assistant ComputationalScientist](https://www.alcf.anl.gov/about/people/sam-foreman) working in thedata science group at the [Leadership ComputingFacility](https://www.alcf.anl.gov) at [Argonne NationalLaboratory](https://www.anl.gov).I'm generally interested in the application of machine learning tocomputational problems in physics, particularly within the context of highperformance computing. My current research focuses on using deep generativemodeling to help build better sampling algorithms in lattice gauge theory. Inparticular, I'm interested in building gauge equivariant neural networkarchitectures and using inductive priors to incorporate physical symmetriesinto machine learning models.I received my PhD in Physics from the University of Iowa in 2019 and my thesiswas on [Learning Better Physics: A Machine Learning Approach to Lattice GaugeTheory](https://iro.uiowa.edu/esploro/outputs/doctoral/Learning-better-physics-a-machine-learning/9983776792002771).Prior to this, I completed two bachelors degrees (Engineering Physics andApplied Mathematics, 2015) from The University of Illinois at Urbana-Champaign.My undergraduate dissertation was titled [Energy Storage in QuantumResonators](https://aip.scitation.org/doi/10.1063/1.5009698) and was supervisedby Professor [Alfred Hübler](https://en.wikipedia.org/wiki/Alfred_H%C3%BCbler)within the Center for Complex Systems Research at UIUC.# Recent Work- M. Zvyagin, A. Brace, K. Hippe, et. al [GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics](https://www.biorxiv.org/content/10.1101/2022.10.10.511571v1.abstract), Oct 2022- A.S. Kronfeld et al. [Lattice QCD and Particle Physics](https://arxiv.org/abs/2207.07641), 15 Jul 2022- D. Boyda, Salvatore Calí, **S. Foreman**, et al., [Applications of Machine Learning to Lattice Quantum Field Theory](https://arxiv.org/abs/2202.05838)[_arXiv:2202.05838_](https://arxiv.org/abs/2202.05838), Feb 2022- **S. Foreman**, X.Y. Jin, J.C. Osborn, [**LeapFrogLayers: Trainable Framework for Effective Topological Sampling**](https://arxiv.org/abs/2112.01582), [slides](https://indico.cern.ch/event/1006302/contributions/4380743/), [_Lattice, 2021_](https://indico.cern.ch/event/1006302)- **S. Foreman** L. Jin, X.Y. Jin, A. Tomiya, J.C. Osborn, & T. Izubuchi, [**HMC with Normalizing Flows**](https://arxiv.org/abs/2112.01586), [slides](https://indico.cern.ch/event/1006302/contributions/4380743/), [_Lattice, 2021_](https://indico.cern.ch/event/1006302/)- **S. Foreman**, X.Y. Jin, & J.C. Osborn, [**Deep Learning Hamiltonian Monte Carlo**](https://arxiv.org/abs/2105.03418) [(+ poster)](https://simdl.github.io/posters/57-supp_DLHMC_Foreman_SimDL-ICLR2021_poster1.pdf) at [_SimDL Workshop @ ICLR_](https://simdl.github.io/), 2021- **S. Foreman**, X.Y. Jin, & J.C. Osborn, [**Machine Learning and Neural Networks for Field Theory**](https://bit.ly/snowmass_ml2020) [_SnowMass_](https://snowmass21.org/), 2020- **S. Foreman** Y. Meurice, J. Giedt & J. Unmuth-Yockey [**Examples of renormalization group transformations for image sets**](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.052129) _Physical Review E._, 2018- **S. Foreman**, J. Giedt, Y. Meurice, & J. Unmuth-Yockey [**RG inspired Machine Learning for lattice field theory**](https://arxiv.org/abs/1710.02079) [_arXiv:1710.02079_](https://www.arxiv.or/abs/1710.02079), 2017- **S. Foreman**, J. Liu, & L. Wortsmann [**Large Energy Density in Three-Plate Nanocapacitors due to Coulomb Blockade**](https://doi.org/10.1063/1.5009698) _J. Appl. Phys_, 2018# Invited Talks- [**Large Scale Training**](https://saforem2.github.io/ai4sci-large-scale-training), at [Introduction to AI-driven Science on Supercomputers: A Student Training Series](https://github.com/argonne-lcf/ai-science-training-series), November 2022 - [**Hyperparameter Management**](https://saforem2.github.io/hparam-management-sdl2022), at [2022 ALCF Simulation, Data, and Learning Workshop](https://www.alcf.anl.gov/events/2022-alcf-simulation-data-and-learning-workshop), October 2022 <!-- <span style="font-size:1.25em;"> -->- [**Statistical Learning**](https://saforem2.github.io/ATPESC-StatisticalLearning), at [ATPESC 2022](https://extremecomputingtraining.anl.gov/), August 2022 [📕 accompanying notebook](https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/00_statisticalLearning/src/atpesc/notebooks/statistical_learning.ipynb)- [**Scientific Data Science: An Emerging Symbiosis**](https://saforem2.github.io/anl-job-talk/), at Argonne National Laboratory, May 2022<!-- <iframe src="https://saforem2.github.io/anl-job-talk/#/" title="ANL Job Talk" width="66%" align="center" height="300" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen style="margin-top:1em;margin-bottom:1em;border:none;align:center;"> --><!-- <p>Your browser does not support iframes.</p> --><!-- </iframe> -->- [**Machine Learning in HEP**](https://saforem2.github.io/physicsSeminar), at UNC Greensboro, March 2022<!-- <iframe src="https://saforem2.github.io/physicsSeminar" title="Machine Learning in HEP" width="66%" align="center" height="300" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen style="border:none;margin-top:1em;margin-bottom:1em;"> --><!-- <p>Your browser does not support iframes.</p> --><!-- </iframe> -->- [**Accelerated Sampling Methods for Lattice Gauge Theory**](https://saforem2.github.io/l2hmc-dwq25/), at [_BNL-HET & RBRC Joint Workshop "DWQ @ 25"_](https://indico.bnl.gov/event/13576/), Dec 2021<!-- <iframe src="https://saforem2.github.io/l2hmc-dwq25" title="Accelerated Sampling Methods for Lattice Gauge Theory" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen width="66%" align="center" height="300" style="border:none;margin-top:1em;margin-bottom:1em;"> --><!-- <p>Your browser does not support iframes.</p> --><!-- </iframe> -->- [**Training Topological Samplers for Lattice Gauge Theory**](https://saforem2.github.io/l2hmc_talk_ect2021/), [_ML4HEP, on and off the Lattice_](https://indico.ectstar.eu/event/77/contributions/2349/) @ ECT\* Trento, Sep 2021<!-- <iframe src="https://saforem2.github.io/l2hmc_talk_ect2021" title="Training Topological Samplers for Lattice Gauge Theory" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen width="66%" align="center" height="300" style="border:none;margin-top:1em;margin-bottom:1em;"> --><!-- <p>Your browser does not support iframes.</p> --><!-- </iframe> -->- [**l2hmc-qcd**](https://github.com/saforem2/l2hmc-qcd) at the _MIT Lattice Group Seminar_, 2021- [**Deep Learning HMC for Improved Gauge Generation**](https://bit.ly/mainz21) to the [_Machine Learning Techniques in Lattice QCD Workshop_](https://bit.ly/mainz21_overview), 2021- [**Machine Learning for Lattice QCD**](https://slides.com/samforeman/l2hmc-qcd-93bc0c) at the University of Iowa, 2020<!-- <iframe src="https://slides.com/samforeman/l2hmc-qcd/embed" title="Machine Learning for Lattice QCD" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen width="66%" align="center" height="300" style="border:none;margin-top:1em;margin-bottom:1em;"> --><!-- <p>Your browser does not support iframes.</p> --><!-- </iframe> --><!-- <iframe src="https://slides.com/samforeman/l2hmc-qcd/embed" width="576" height="300" title="l2hmc-qcd" scrolling="no" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe> -->- [**Machine learning inspired analysis of the Ising model transition**](https://bit.ly/latt2018) to [_Lattice, 2018_](https://indico.fnal.gov/event/15949/overview)- **Machine Learning Analysis of Ising Worms** at _Brookhaven National Laboratory_, 2017<!-- </span> --><!-- {{< admonition type=tip title="" open=true >}} -->::: {.callout-tip}- You can get a live view of some of my recent talks [here](slides):::<!-- {{< /admonition >}} --><palign="center"><ahref="https://hits.seeyoufarm.com"><imgalign="center"src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fwww.samforeman.me&count_bg=%2300CCFF&title_bg=%23303030&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false"/></a></p>