---title: "Slides"title-block-style: nonedate-modified: 2023-05-12---# Recent Talks- [**Large Scale Training**](https://saforem2.github.io/ai4sci-large-scale-training), at [Introduction to AI-driven Science on Supercomputers: A Student Training Series](https://github.com/argonne-lcf/ai-science-training-series), November 2022<iframesrc="https://saforem2.github.io/ai4sci-large-scale-training/#"title="Large Scale Training"width="66%"align="center"height="400"scrolling="no"frameborder="0"webkitallowfullscreenmozallowfullscreenallowfullscreenstyle="margin-top:1em;margin-bottom:1em;border:none;align:center;"><p>Your browser does not support iframes.</p></iframe>- [**Hyperparameter Management**](https://saforem2.github.io/hparam-management-sdl2022/), at [2022 ALCF Simulation, Data, and Learning Workshop](https://www.alcf.anl.gov/events/2022-alcf-simulation-data-and-learning-workshop), October 2022 <iframesrc="https://saforem2.github.io/hparam-management-sdl2022"title="Hyperparameter Management"width="66%"align="center"height="400"scrolling="no"frameborder="0"webkitallowfullscreenmozallowfullscreenallowfullscreenstyle="margin-top:1em;margin-bottom:1em;border:none;align:center;"><p>Your browser does not support iframes.</p></iframe>- [**Statistical Learning**](https://saforem2.github.io/ATPESC-StatisticalLearning), at [ATPESC 2022](https://extremecomputingtraining.anl.gov/), August 2022 [📕 accompanying notebook](https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/00_statisticalLearning/src/atpesc/notebooks/statistical_learning.ipynb)<iframesrc="https://saforem2.github.io/ATPESC-StatisticalLearning/#/"title="Statistical Learning"width="66%"align="center"height="400"scrolling="no"frameborder="0"webkitallowfullscreenmozallowfullscreenallowfullscreenstyle="margin-top:1em;margin-bottom:1em;border:none;align:center;"><p>Your browser does not support iframes.</p></iframe>- [**Scientific Data Science: An Emerging Symbiosis**](https://saforem2.github.io/anl-job-talk/), at Argonne National Laboratory, May 2022<iframesrc="https://saforem2.github.io/anl-job-talk"title="Scientific Data Science"width="66%"align="center"height="400"scrolling="no"frameborder="0"webkitallowfullscreenmozallowfullscreenallowfullscreenstyle="margin-top:1em;margin-bottom:1em;border:none;align:center;"><p>Your browser does not support iframes.</p></iframe>- [**Machine Learning in HEP**](https://saforem2.github.io/physicsSeminar), at UNC Greensboro, March 2022<iframesrc="https://saforem2.github.io/physicsSeminar"title="Machine Learning in HEP"width="66%"align="center"height="300"scrolling="no"frameborder="0"webkitallowfullscreenmozallowfullscreenallowfullscreenstyle="border:none;margin-top:1em;margin-bottom:1em;"><p>Your browser does not support iframes.</p></iframe>- [**Accelerated Sampling Methods for Lattice Gauge Theory**](https://saforem2.github.io/l2hmc-dwq25/), at [_BNL-HET & RBRC Joint Workshop "DWQ @ 25"_](https://indico.bnl.gov/event/13576/), Dec 2021<iframesrc="https://saforem2.github.io/l2hmc-dwq25"title="Accelerated Sampling Methods for Lattice Gauge Theory"scrolling="no"frameborder="0"webkitallowfullscreenmozallowfullscreenallowfullscreenwidth="66%"align="center"height="400"style="border:none;margin-top:1em;margin-bottom:1em;"><p>Your browser does not support iframes.</p></iframe>- [**Training Topological Samplers for Lattice Gauge Theory**](https://saforem2.github.io/l2hmc_talk_ect2021/), [_ML4HEP, on and off the Lattice_](https://indico.ectstar.eu/event/77/contributions/2349/) @ ECT\* Trento, Sep 2021<iframesrc="https://saforem2.github.io/l2hmc_talk_ect2021"title="Training Topological Samplers for Lattice Gauge Theory"scrolling="no"frameborder="0"webkitallowfullscreenmozallowfullscreenallowfullscreenwidth="66%"align="center"height="400"style="border:none;margin-top:1em;margin-bottom:1em;"><p>Your browser does not support iframes.</p></iframe>- [**l2hmc-qcd**](https://github.com/saforem2/l2hmc-qcd) at the _MIT Lattice Group Seminar_, 2021- [**Deep Learning HMC for Improved Gauge Generation**](https://bit.ly/mainz21) to the [_Machine Learning Techniques in Lattice QCD Workshop_](https://bit.ly/mainz21_overview), 2021- [**Machine Learning for Lattice QCD**](https://slides.com/samforeman/l2hmc-qcd-93bc0c) at the University of Iowa, 2020<iframesrc="https://slides.com/samforeman/l2hmc-qcd/embed"title="Machine Learning for Lattice QCD"scrolling="no"frameborder="0"webkitallowfullscreenmozallowfullscreenallowfullscreenscrolling="no"frameborder="0"webkitallowfullscreenmozallowfullscreenallowfullscreenwidth="66%"align="center"height="400"style="border:none;margin-top:1em;margin-bottom:1em;"><p>Your browser does not support iframes.</p></iframe>- [**Machine learning inspired analysis of the Ising model transition**](https://bit.ly/latt2018) to [_Lattice, 2018_](https://indico.fnal.gov/event/15949/overview)- **Machine Learning Analysis of Ising Worms** at _Brookhaven National Laboratory_, 2017