Last Updated: 05/13/2024 @ 19:16:46
ezpz
🍋
👀 Overview
📝 Example
We provide below a complete example that will launch test_dist.py
(included below) across all GPUs in your current {PBS
, slurm
} job and train a simple model using either DDP
or deepspeed
test_dist.py
"""
ezpz_ddp.py
- to launch:
$ source ezpz/src/ezpz/bin/savejobenv
$ BACKEND=DDP launch python3 ezpz_ddp.py
"""
import os
import logging
import time
from typing import Optional
import torch
import ezpz as ez
# backend can be any of DDP, deespepeed, horovod
RANK = ez.setup_torch(
backend=(
backend := os.environ.get('BACKEND', 'DDP')
),
port=(
port := os.environ.get("MASTER_PORT", "29500")
)
)
# RANK = DIST_INIT['rank']
# WORLD_SIZE = DIST_INIT['world_size']
# LOCAL_RANK = DIST_INIT['local_rank']
# if DEVICE == "cuda" and torch.cuda.is_available():
# torch.cuda.set_device(LOCAL_RANK)
DEVICE = ez.get_torch_device()
WORLD_SIZE = ez.get_world_size()
LOCAL_RANK = ez.get_local_rank()
DEVICE_ID = f"{DEVICE}:{LOCAL_RANK}"
# log only from RANK == 0
logger = logging.getLogger(__name__)
logger.setLevel("INFO") if RANK == 0 else logger.setLevel("CRITICAL")
BATCH_SIZE = int(os.environ.get("BATCH_SIZE", 64)) # 64
INPUT_SIZE = int(os.environ.get("INPUT_SIZE", 128)) # 128
OUTPUT_SIZE = int(os.environ.get("OUTPUT_SIZE", 128)) # 128
DTYPE = os.environ.get("DTYPE", torch.get_default_dtype())
TRAIN_ITERS = int(os.environ.get("TRAIN_ITERS", 50))
# logger.info(f"{DIST_INIT=}")
class Network(torch.nn.Module):
def __init__(
self,
input_dim: int = 128,
output_dim: int = 128,
sizes: Optional[list[int]] = None,
):
super(Network, self).__init__()
if sizes is None:
self.layers = torch.nn.Linear(input_dim, output_dim)
elif len(sizes) > 0:
layers = [torch.nn.Linear(input_dim, sizes[0])]
for idx, size in enumerate(sizes[1:]):
layers.append(
torch.nn.Linear(sizes[idx], size)
)
layers.append(torch.nn.Linear(sizes[-1], output_dim))
self.layers = torch.nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.layers(x)
def calc_loss(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return (y - x).pow(2).sum()
def plot_losses(losses: dict) -> None:
import plotext as pltx
# y = list(losses.values())
pltx.theme('clear')
pltx.scatter(list(losses.values()))
pltx.show()
pltx.save_fig("test_dist_losses.txt")
pltx.ylabel("loss")
pltx.xlabel("iteration")
def main():
model = Network(
input_dim=INPUT_SIZE,
output_dim=OUTPUT_SIZE,
sizes=[1024, 512, 256, 128]
)
model.to(DEVICE)
model.to(DEVICE_ID)
logger.info(f'{model=}')
optimizer = torch.optim.Adam(model.parameters())
if backend.lower() == 'ddp':
if WORLD_SIZE > 1:
from torch.nn.parallel import DistributedDataParallel as DDP
model = DDP(
model,
device_ids=[]
)
elif backend.lower() in ('ds', 'deepspeed'):
import deepspeed
# config = ez.load_ds_config().update(
# {"train_micro_batch_size_per_gpu": BATCH_SIZE}
# )
import argparse
parser = argparse.ArgumentParser(
description='My training script.'
)
parser.add_argument(
'--local_rank',
required=False,
type=int,
default=-1,
# default=ez.get_local_rank()),
help='local rank passed from distributed launcher',
)
# Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
cmd_args = parser.parse_args()
logger.info(f'{cmd_args=}')
model, optimizer, *_ = deepspeed.initialize(
args=cmd_args,
model=model,
optimizer=optimizer,
)
losses = {}
for iter in range(TRAIN_ITERS):
t0 = time.perf_counter()
x = torch.rand((BATCH_SIZE, INPUT_SIZE), dtype=DTYPE).to(DEVICE)
y = model(x)
loss = calc_loss(x, y)
losses[iter] = loss
dtf = ((t1 := time.perf_counter()) - t0)
if backend == 'deepspeed':
model.backward(loss)
model.step(loss)
else:
loss.backward()
optimizer.step()
optimizer.zero_grad()
dtb = time.perf_counter() - t1
logger.info(
', '.join([
f'{iter=}',
f'loss={loss.item():.5f}',
f'dt={dtf+dtb:.3f}',
f'{dtf=:.3f}',
f'{dtb=:.3f}'
])
)
if RANK == 0:
plot_losses(losses)
if __name__ == '__main__':
main()
🏃🏻♂️ Running
git clone
+pip install ezpz
:[optional] If using
PBS
orslurm
:Save Job info:
-
$ source ezpz/src/ezpz/bin/savejobenv ┌─────────────────────────────────────────────────────────────────── │ Writing PBS vars to /home/foremans/.pbsenv │ HOSTFILE: /var/spool/pbs/aux/8992614.amn-0001 │ NHOSTS: 2 │ NGPU_PER_HOST: 12 GPUs per host │ NGPUS: 24 GPUs total └─────────────────────────────────────────────────────────────────── ┌─────────────────────────────────────────────────────────────────── │ [DIST INFO]: │ • Writing Job info to /home/foremans/.pbsenv │ • HOSTFILE: /var/spool/pbs/aux/8992614.amn-0001 │ • NHOSTS: 2 │ • NGPU_PER_HOST: 12 │ • NGPUS = (NHOSTS * NGPU_PER_HOST) = 24 └────────────────────────────────────────────────────────────────── ┌────────────────────────────────────────────────────────────────── │ [Hosts]: │ • x1921c0s0b0n0.hostmgmt2000.cm.americas.sgi.com, x1921c0s2b0n0.hostmgmt2000.cm.americas.sgi.com │ • [host:0] - x1921c0s0b0n0.hostmgmt2000.cm.americas.sgi.com │ • [host:1] - x1921c0s2b0n0.hostmgmt2000.cm.americas.sgi.com └────────────────────────────────────────────────────────────────── ┌──────────────────────────────────────────────────────────────────────────────── │ YOU ARE HERE: /home/foremans │ Run 'source ./bin/getjobenv' in a NEW SHELL to automatically set env vars └──────────────────────────────────────────────────────────────────────────────── ┌────────────────────────────────────────────────────────────────── │ [Launch]: │ • Use: 'launch' (=mpiexec --verbose --envall -n 24 -ppn 12 --hostfile /var/spool/pbs/aux/8992614.amn-0001) │ to launch job └───────────────────────────────────────────────────────────────────
this will automatically define a
launch
alias:
-
Launch
test_dist.py
:DDP:
DeepSpeed:
Output:
GPU
$ launch python3 -m ezpz.test_dist |& tee ezpz-test-dist.log Connected to tcp://x3005c0s13b0n0.hsn.cm.polaris.alcf.anl.gov:7919 Found executable /lus/eagle/projects/datascience/foremans/miniconda3/envs/2024-04-20/bin/python3 Launching application 9e4c8311-1729-4385-b1d2-d4cd6006ac1d [2024-04-20 19:26:22][INFO][dist:290] - [device='cuda'][rank=1/7][local_rank=1/3][node=1/1] [2024-04-20 19:26:22][INFO][dist:290] - [device='cuda'][rank=5/7][local_rank=1/3][node=1/1] [2024-04-20 19:26:22][INFO][dist:290] - [device='cuda'][rank=3/7][local_rank=3/3][node=1/1] [2024-04-20 19:26:22][INFO][dist:290] - [device='cuda'][rank=7/7][local_rank=3/3][node=1/1] [2024-04-20 19:26:22][INFO][dist:290] - [device='cuda'][rank=4/7][local_rank=0/3][node=0/1] [2024-04-20 19:26:22][INFO][dist:290] - [device='cuda'][rank=6/7][local_rank=2/3][node=0/1] [2024-04-20 19:26:22][INFO][dist:290] - [device='cuda'][rank=2/7][local_rank=2/3][node=0/1] [2024-04-20 19:26:22][INFO][dist:290] - [device='cuda'][rank=0/7][local_rank=0/3][node=0/1] [2024-04-20 19:26:22][WARNING][dist:296] - Using [8 / 8] available "cuda" devices !! [2024-04-20 19:26:22][INFO][test_dist:46] - DIST_INIT={'world_size': 8, 'rank': 0, 'local_rank': 0} [2024-04-20 19:26:24][INFO][test_dist:84] - model=Network( (layers): Sequential( (0): Linear(in_features=128, out_features=1024, bias=True) (1): Linear(in_features=1024, out_features=512, bias=True) (2): Linear(in_features=512, out_features=256, bias=True) (3): Linear(in_features=256, out_features=128, bias=True) (4): Linear(in_features=128, out_features=128, bias=True) ) ) [2024-04-20 19:26:28][INFO][test_dist:126] - iter=0, loss=2789.99072, dt=0.664, dtf=0.659, dtb=0.005 [2024-04-20 19:26:28][INFO][test_dist:126] - iter=1, loss=1961.33459, dt=0.002, dtf=0.001, dtb=0.002 [2024-04-20 19:26:28][INFO][test_dist:126] - iter=2, loss=1450.47461, dt=0.002, dtf=0.000, dtb=0.002 [2024-04-20 19:26:28][INFO][test_dist:126] - iter=3, loss=1088.81958, dt=0.002, dtf=0.000, dtb=0.002 [2024-04-20 19:26:28][INFO][test_dist:126] - iter=4, loss=945.28839, dt=0.002, dtf=0.000, dtb=0.002 [2024-04-20 19:26:28][INFO][test_dist:126] - iter=5, loss=906.78857, dt=0.002, dtf=0.000, dtb=0.001 [2024-04-20 19:26:28][INFO][test_dist:126] - iter=6, loss=789.18243, dt=0.002, dtf=0.000, dtb=0.002 [2024-04-20 19:26:28][INFO][test_dist:126] - iter=7, loss=751.63477, dt=0.002, dtf=0.000, dtb=0.002 [2024-04-20 19:26:28][INFO][test_dist:126] - iter=8, loss=735.62915, dt=0.002, dtf=0.000, dtb=0.002 [2024-04-20 19:26:28][INFO][test_dist:126] - iter=9, loss=732.12775, dt=0.002, dtf=0.000, dtb=0.001
XPU
# [04:50:57 PM] [foremans@x1921c0s0b0n0] ~/q/llm.devkit/Megatron-DeepSpeed/dep/ezpz/s/ezpz main q4-drop 32s $ launch python3 -Wignore test_dist.py Connected to tcp://x1921c0s0b0n0.hostmgmt2000.cm.americas.sgi.com:7919 Found executable /home/foremans/miniconda3/envs/q4-drop/bin/python3 Launching application 5bf3e9e8-89fb-412a-a49e-3c81601436b7 [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=9/23][local_rank=9/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=14/23][local_rank=2/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=3/23][local_rank=3/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=17/23][local_rank=5/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=6/23][local_rank=6/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=13/23][local_rank=1/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=7/23][local_rank=7/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=19/23][local_rank=7/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=8/23][local_rank=8/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=21/23][local_rank=9/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=10/23][local_rank=10/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=22/23][local_rank=10/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=11/23][local_rank=11/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=23/23][local_rank=11/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=2/23][local_rank=2/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=20/23][local_rank=8/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=4/23][local_rank=4/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=15/23][local_rank=3/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=18/23][local_rank=6/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=12/23][local_rank=0/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=1/23][local_rank=1/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=16/23][local_rank=4/11][node=0/1] [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=5/23][local_rank=5/11][node=1/1] [2024-04-19 16:51:06][INFO][dist:239] - DistInfo={ "DEVICE": "xpu", "DEVICE_ID": "xpu:0", "DISTRIBUTED_BACKEND": "ccl", "GPUS_PER_NODE": 12, "HOSTFILE": "/var/spool/pbs/aux/8992337.amn-0001", "HOSTNAME": "x1921c0s0b0n0.hostmgmt2000.cm.americas.sgi.com", "HOSTS": "['x1921c0s0b0n0', 'x1921c0s5b0n0']", "LOCAL_RANK": 0, "MACHINE": "SunSpot", "NGPUS": 24, "NODE_ID": 0, "NUM_NODES": 2, "RANK": 0, "SCHEDULER": "PBS", "WORLD_SIZE_IN_USE": 24, "WORLD_SIZE_TOTAL": 24 } [2024-04-19 16:51:06][INFO][dist:602] - Using oneccl_bindings from: /lus/gila/projects/Aurora_deployment/foremans/q4-drop_sunspot/llm.devkit/torch-ccl/oneccl_bindings_for_pytorch/__init__.py [2024-04-19 16:51:06][INFO][dist:604] - Using ipex from: /home/foremans/miniconda3/envs/q4-drop/lib/python3.9/site-packages/intel_extension_for_pytorch/__init__.py [2024-04-19 16:51:06][INFO][dist:605] - [0/24] Using device='xpu' with backend='DDP' + 'ccl' for distributed training. [2024-04-19 16:51:06][INFO][dist:290] - [device='xpu'][rank=0/23][local_rank=0/11][node=0/1] [2024-04-19 16:51:06][WARNING][dist:296] - Using [24 / 24] available "xpu" devices !! 2024:04:19-16:51:06:(16909) |CCL_WARN| MPI was initialized externally, CCL-MPI specific environment is ignored [2024-04-19 16:51:06][INFO][test_dist:71] - model=Network( (layers): Sequential( (0): Linear(in_features=128, out_features=1024, bias=True) (1): Linear(in_features=1024, out_features=512, bias=True) (2): Linear(in_features=512, out_features=256, bias=True) (3): Linear(in_features=256, out_features=128, bias=True) (4): Linear(in_features=128, out_features=128, bias=True) ) ) [2024-04-19 16:51:18][INFO][test_dist:101] - iter=0, loss=2709.53418, dt=1.380, dtf=0.950, dtb=0.430 [2024-04-19 16:51:18][INFO][test_dist:101] - iter=1, loss=2058.49805, dt=0.133, dtf=0.002, dtb=0.131 [2024-04-19 16:51:18][INFO][test_dist:101] - iter=2, loss=1507.91187, dt=0.004, dtf=0.001, dtb=0.004 [2024-04-19 16:51:18][INFO][test_dist:101] - iter=3, loss=1181.78577, dt=0.004, dtf=0.001, dtb=0.003 [2024-04-19 16:51:18][INFO][test_dist:101] - iter=4, loss=949.43561, dt=0.004, dtf=0.001, dtb=0.003 [2024-04-19 16:51:18][INFO][test_dist:101] - iter=5, loss=848.14905, dt=0.004, dtf=0.001, dtb=0.003 [2024-04-19 16:51:18][INFO][test_dist:101] - iter=6, loss=788.76123, dt=0.004, dtf=0.001, dtb=0.003 [2024-04-19 16:51:18][INFO][test_dist:101] - iter=7, loss=753.59509, dt=0.004, dtf=0.001, dtb=0.003 [2024-04-19 16:51:18][INFO][test_dist:101] - iter=8, loss=750.62225, dt=0.004, dtf=0.001, dtb=0.003 [2024-04-19 16:51:18][INFO][test_dist:101] - iter=9, loss=740.23474, dt=0.004, dtf=0.001, dtb=0.003 Application 5bf3e9e8 resources: utime=621s stime=111s maxrss=1746816KB inblock=192 oublock=16 minflt=10719359 majflt=7493 nvcsw=169332 nivcsw=77546
CPU
$ TORCH_DEVICE=cpu mpirun -np 12 python3 test_dist.py [2024-04-19 14:44:12][INFO][dist:290] - [device='cpu'][rank=1/11][local_rank=1/11][node=0/0] [2024-04-19 14:44:12][INFO][dist:290] - [device='cpu'][rank=3/11][local_rank=3/11][node=0/0] [2024-04-19 14:44:12][INFO][dist:290] - [device='cpu'][rank=6/11][local_rank=6/11][node=0/0] [2024-04-19 14:44:12][INFO][dist:290] - [device='cpu'][rank=5/11][local_rank=5/11][node=0/0] [2024-04-19 14:44:12][INFO][dist:290] - [device='cpu'][rank=2/11][local_rank=2/11][node=0/0] [2024-04-19 14:44:12][INFO][dist:290] - [device='cpu'][rank=10/11][local_rank=10/11][node=0/0] [2024-04-19 14:44:12][INFO][dist:290] - [device='cpu'][rank=4/11][local_rank=4/11][node=0/0] [2024-04-19 14:44:12][INFO][dist:290] - [device='cpu'][rank=7/11][local_rank=7/11][node=0/0] [2024-04-19 14:44:12][INFO][dist:290] - [device='cpu'][rank=9/11][local_rank=9/11][node=0/0] [2024-04-19 14:44:13][INFO][dist:290] - [device='cpu'][rank=11/11][local_rank=11/11][node=0/0] [2024-04-19 14:44:13][INFO][dist:290] - [device='cpu'][rank=8/11][local_rank=8/11][node=0/0] [2024-04-19 14:44:13][INFO][dist:239] - DistInfo={ "DEVICE": "cpu", "DEVICE_ID": "cpu:0", "DISTRIBUTED_BACKEND": "gloo", "GPUS_PER_NODE": 12, "HOSTFILE": "/Users/samforeman/projects/saforem2/ezpz/src/ezpz/hostfile", "HOSTNAME": "Sams-MacBook-Pro.local", "HOSTS": "['Sams-MacBook-Pro']", "LOCAL_RANK": 0, "MACHINE": "Sams-MacBook-Pro.local", "NGPUS": 12, "NODE_ID": 0, "NUM_NODES": 1, "RANK": 0, "SCHEDULER": "LOCAL", "WORLD_SIZE_IN_USE": 12, "WORLD_SIZE_TOTAL": 12 } [2024-04-19 14:44:13][INFO][dist:605] - [0/12] Using device='cpu' with backend='DDP' + 'gloo' for distributed training. [2024-04-19 14:44:13][INFO][dist:290] - [device='cpu'][rank=0/11][local_rank=0/11][node=0/0] [2024-04-19 14:44:13][WARNING][dist:296] - Using [12 / 12] available "cpu" devices !! [2024-04-19 14:44:13][INFO][test_dist:72] - model=Network( (layers): Sequential( (0): Linear(in_features=128, out_features=1024, bias=True) (1): Linear(in_features=1024, out_features=512, bias=True) (2): Linear(in_features=512, out_features=256, bias=True) (3): Linear(in_features=256, out_features=128, bias=True) (4): Linear(in_features=128, out_features=128, bias=True) ) ) [2024-04-19 14:44:14][INFO][test_dist:102] - iter=0, loss=2801.62549, dt=0.389, dtf=0.042, dtb=0.348 [2024-04-19 14:44:14][INFO][test_dist:102] - iter=1, loss=2092.84692, dt=0.051, dtf=0.010, dtb=0.041 [2024-04-19 14:44:14][INFO][test_dist:102] - iter=2, loss=1482.45520, dt=0.037, dtf=0.004, dtb=0.033 [2024-04-19 14:44:14][INFO][test_dist:102] - iter=3, loss=1174.38037, dt=0.033, dtf=0.002, dtb=0.031 [2024-04-19 14:44:14][INFO][test_dist:102] - iter=4, loss=938.39917, dt=0.032, dtf=0.003, dtb=0.030 [2024-04-19 14:44:14][INFO][test_dist:102] - iter=5, loss=888.37390, dt=0.035, dtf=0.001, dtb=0.033 [2024-04-19 14:44:14][INFO][test_dist:102] - iter=6, loss=784.63470, dt=0.036, dtf=0.003, dtb=0.032 [2024-04-19 14:44:14][INFO][test_dist:102] - iter=7, loss=749.53839, dt=0.033, dtf=0.002, dtb=0.031 [2024-04-19 14:44:14][INFO][test_dist:102] - iter=8, loss=732.22656, dt=0.036, dtf=0.003, dtb=0.034 [2024-04-19 14:44:15][INFO][test_dist:102] - iter=9, loss=730.63776, dt=0.034, dtf=0.001, dtb=0.033 35.68s user 17.20s system 546% cpu 9.681s total
🧰 Helper Utilities
We provide some shell scripts that are useful when working with a job scheduler (e.g. PBS Pro
@ ALCF or slurm
elsewhere).
-
Shell script to save relevant job related environment variables to a file which can be
sourced
from new login instances.savejobenv
- Launch a job, clone (or navigate into)
ezpz
, andsource
src/ezpz/bin/savejobenv
:
(thetalogin4) $ qsub-gpu -A datascience -n 2 -q full-node --attrs="filesystems=home,grand,eagle,theta-fs0:ssds=required" -t 06:00 -I Job routed to queue "full-node". Wait for job 10155652 to start... Opening interactive session to thetagpu04 [...]
(thetagpu04) $ git clone https://github.com/saforem2/ezpz (thetagpu04) $ source ezpz/src/ezpz/bin/savejobenv ┌─────────────────────────────────────────────────────────────────── │ Writing COBALT vars to /home/foremans/.cobaltenv │ HOSTFILE: /var/tmp/cobalt.10155652 │ NHOSTS: 2 │ 8 GPUs per host │ 16 GPUs total └─────────────────────────────────────────────────────────────────── ┌─────────────────────────────────────────────────────────────────── │ [DIST INFO]: │ • Writing Job info to /home/foremans/.cobaltenv │ • HOSTFILE: /var/tmp/cobalt.10155652 │ • NHOSTS: 2 │ • NGPU_PER_HOST: 8 │ • NGPUS = (NHOSTS * NGPU_PER_HOST) = 16 │ [Hosts]: │ • thetagpu04 thetagpu19 │ [Launch]: │ • Use: 'launch' (=mpirun -n -N --hostfile /var/tmp/cobalt.10155652 -x PATH -x LD_LIBRARY_PATH) │ to launch job └─────────────────────────────────────────────────────────────────── ┌──────────────────────────────────────────────────────────────────────────────── │ YOU ARE HERE: /home/foremans │ Run 'source ./bin/getjobenv' in a NEW SHELL to automatically set env vars └────────────────────────────────────────────────────────────────────────────────
- Launch a job, clone (or navigate into)
-
Shell script that, when sourced, will populate the current environment with the necessary job-related variables.
getjobenv
Now, in a NEW SHELL
(thetagpu19) $ module load conda/2023-01-11; conda activate base (thetagpu19) $ cd ezpz (thetagpu19) $ source ./src/ezpz/bin/getjobenv ┌────────────────────────────────────────────────────────────────── │ [Hosts]: │ • thetagpu04, thetagpu19 └────────────────────────────────────────────────────────────────── ┌────────────────────────────────────────────────────────────────── │ [DIST INFO]: │ • Loading job env from: /home/foremans/.cobaltenv │ • HOSTFILE: /var/tmp/cobalt.10155652 │ • NHOSTS: 2 │ • NGPU_PER_HOST: 8 │ • NGPUS (NHOSTS x NGPU_PER_HOST): 16 │ • DIST_LAUNCH: mpirun -n 16 -N 8 --hostfile /var/tmp/cobalt.10155652 -x PATH -x LD_LIBRARY_PATH │ • Defining alias: launch: aliased to mpirun -n 16 -N 8 --hostfile /var/tmp/cobalt.10155652 -x PATH -x LD_LIBRARY_PATH └────────────────────────────────────────────────────────────────── (thetagpu19) $ mkdir -p venvs/thetaGPU/2023-01-11 (thetagpu19) $ python3 -m venv venvs/thetaGPU/2023-01-11 --system-site-packages (thetagpu19) $ source venvs/thetaGPU/2023-01-11/bin/activate (thetagpu19) $ python3 -m pip install -e . --require-virtualenv (thetagpu19) $ launch python3 -m ezpz framework=pytorch backend=DDP [2023-10-26 12:21:26,716][ezpz.dist][INFO] - Using DDP for distributed training [2023-10-26 12:21:26,787][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 13 [2023-10-26 12:21:26,787][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 14 [2023-10-26 12:21:26,787][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 8 [2023-10-26 12:21:26,787][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 12 [2023-10-26 12:21:26,787][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 6 [2023-10-26 12:21:26,788][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 9 [2023-10-26 12:21:26,787][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 10 [2023-10-26 12:21:26,788][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 15 [2023-10-26 12:21:26,788][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 11 [2023-10-26 12:21:26,789][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 7 [2023-10-26 12:21:26,789][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 3 [2023-10-26 12:21:26,789][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 1 [2023-10-26 12:21:26,789][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 4 [2023-10-26 12:21:26,789][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 5 [2023-10-26 12:21:26,789][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 2 [2023-10-26 12:21:26,798][torch.distributed.distributed_c10d][INFO] - Added key: store_based_barrier_key:1 to store for rank: 0 [2023-10-26 12:21:26,811][torch.distributed.distributed_c10d][INFO] - Rank 14: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,812][torch.distributed.distributed_c10d][INFO] - Rank 6: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,814][torch.distributed.distributed_c10d][INFO] - Rank 13: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,815][torch.distributed.distributed_c10d][INFO] - Rank 7: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,816][torch.distributed.distributed_c10d][INFO] - Rank 8: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,817][torch.distributed.distributed_c10d][INFO] - Rank 3: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,819][torch.distributed.distributed_c10d][INFO] - Rank 12: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,820][torch.distributed.distributed_c10d][INFO] - Rank 1: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,821][torch.distributed.distributed_c10d][INFO] - Rank 10: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,823][torch.distributed.distributed_c10d][INFO] - Rank 4: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,825][torch.distributed.distributed_c10d][INFO] - Rank 9: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,825][torch.distributed.distributed_c10d][INFO] - Rank 5: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,827][torch.distributed.distributed_c10d][INFO] - Rank 15: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,828][torch.distributed.distributed_c10d][INFO] - Rank 2: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,830][torch.distributed.distributed_c10d][INFO] - Rank 11: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:26,831][torch.distributed.distributed_c10d][INFO] - Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. [2023-10-26 12:21:27,035][ezpz.dist][INFO] - RANK: 0 / 15 { "framework": "pytorch", "backend": "DDP", "use_wandb": false, "seed": null, "port": null, "ds_config_path": null, "wandb_project_name": null, "precision": null, "ngpus": null } [2023-10-26 12:21:27,038][__main__][INFO] - Output dir: /lus/grand/projects/datascience/foremans/locations/thetaGPU/projects/saforem2/ezpz/outputs/runs/pytorch/DDP/2023-10-26/12-21-25 [2023-10-26 12:21:27,097][ezpz.dist][INFO] - RANK: 8 / 15 [2023-10-26 12:21:27,103][ezpz.dist][INFO] - RANK: 6 / 15 [2023-10-26 12:21:27,104][ezpz.dist][INFO] - RANK: 14 / 15 [2023-10-26 12:21:27,111][ezpz.dist][INFO] - RANK: 13 / 15 [2023-10-26 12:21:27,116][ezpz.dist][INFO] - RANK: 1 / 15 [2023-10-26 12:21:27,126][ezpz.dist][INFO] - RANK: 7 / 15 [2023-10-26 12:21:27,135][ezpz.dist][INFO] - RANK: 10 / 15 [2023-10-26 12:21:27,139][ezpz.dist][INFO] - RANK: 12 / 15 [2023-10-26 12:21:27,141][ezpz.dist][INFO] - RANK: 9 / 15 [2023-10-26 12:21:27,141][ezpz.dist][INFO] - RANK: 15 / 15 [2023-10-26 12:21:27,141][ezpz.dist][INFO] - RANK: 11 / 15 [2023-10-26 12:21:27,141][ezpz.dist][INFO] - RANK: 5 / 15 [2023-10-26 12:21:27,144][ezpz.dist][INFO] - RANK: 2 / 15 [2023-10-26 12:21:27,145][ezpz.dist][INFO] - RANK: 4 / 15 [2023-10-26 12:21:27,145][ezpz.dist][INFO] - RANK: 3 / 15 16.56s user 30.05s system 706% cpu 6.595s total
while this example looked at ThetaGPU, the exact same process will work on any of
{ThetaGPU, Polaris, Perlmutter}
.
Citation
@online{foreman2024,
author = {Foreman, Sam},
title = {`Ezpz`},
date = {2024-05-13},
url = {https://saforem2.github.io/ezpz},
langid = {en}
}