Creating Small(-ish) LLMs

2023-11-30

Creating Small(-ish) LLMs1

LLM Tutorial / Workshop
Argonne National Laboratory
Building 240, Room 1501


Sam Foreman
2023-11-30

LLMs have taken the NLP community world by storm2

Emergent Abilities

Emergent abilities of Large Language Models Yao et al. (2023)

Training LLMs

Figure 1: Visualization from Yang et al. (2023)

Life-Cycle of the LLM

  1. Data collection + preprocessing

  2. Pre-training

    • Architecture decisions:
      {model_size, hyperparameters,
      parallelism, lr_schedule, ...}
  3. Supervised Fine-Tuning

    • Instruction Tuning
    • Alignment
  4. Deploy (+ monitor, re-evaluate, etc.)

Figure 2: Pre-training: Virtually all of the compute used during pretraining phase1.

Forward Pass

Figure 3: Language Model trained for causal language modeling. Video from: 🤗 Generation with LLMs

Generating Text

Figure 4: Language Model trained for causal language modeling. Video from: 🤗 Generation with LLMs

Life-Cycle of the LLM: Pre-training

Figure 5: Pre-training: Virtually all of the compute used during pretraining phase

Life-Cycle of the LLM: Fine-Tuning

Figure 6: Fine-tuning1: Fine-tuning actually updates the model’s weights to make the model better at a certain task.

Assistant Models

saforem2/nanoGPT

  • Fork of Andrej Karpathy’s nanoGPT

Figure 7: The simplest, fastest repository for training / finetuning GPT based models.

Install

git clone https://github.com/saforem2/nanoGPT
cd nanoGPT
mkdir -p venv
python3 -m venv venv --system-site-packages
source venv/bin/activate
python3 -m pip install -e .
python3 -c 'import ngpt; print(ngpt.__file__)'
# ./nanoGPT/src/ngpt/__init__.py

Dependencies

  • transformers for transformers (to load GPT-2 checkpoints)
  • datasets for datasets (if you want to use OpenWebText)
  • tiktoken for OpenAI’s fast BPE code
  • wandb for optional logging
  • tqdm for progress bars

Quick Start

  • We start with training a character-level GPT on the works of Shakespeare.

    1. Downloading the data (~ 1MB) file
    2. Convert raw text to one large stream of integers
    python3 data/shakespeare_char/prepare.py

    This will create data/shakespeare_char/{train.bin, val.bin}.

model.py

class GPT(nn.Module):
    def __init__(self, config: ModelConfig):
        super().__init__()
        assert config.vocab_size is not None
        assert config.block_size is not None
        self.config = config

        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            drop = nn.Dropout(config.dropout),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = LayerNorm(config.n_embd, bias=config.bias),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        # with weight tying when using torch.compile() some warnings get generated:
        # "UserWarning: functional_call was passed multiple values for tied weights.
        # This behavior is deprecated and will be an error in future versions"
        # not 100% sure what this is, so far seems to be harmless. TODO investigate
        self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying

        # init all weights
        self.apply(self._init_weights)
        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))

        # report number of parameters
        log.info("number of parameters: %.2fM" % (self.get_num_params()/1e6,))

    def get_num_params(self, non_embedding=True):
        """
        Return the number of parameters in the model.
        For non-embedding count (default), the position embeddings get subtracted.
        The token embeddings would too, except due to the parameter sharing these
        params are actually used as weights in the final layer, so we include them.
        """
        n_params = sum(p.numel() for p in self.parameters())
        if non_embedding:
            n_params -= self.transformer.wpe.weight.numel()
        return n_params

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)

        # forward the GPT model itself
        tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
        pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
        x = self.transformer.drop(tok_emb + pos_emb)
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.lm_head(x)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the lm_head on the very last position
            logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
            loss = None

        return logits, loss

    def crop_block_size(self, block_size):
        # model surgery to decrease the block size if necessary
        # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
        # but want to use a smaller block size for some smaller, simpler model
        assert block_size <= self.config.block_size
        self.config.block_size = block_size
        self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
        for block in self.transformer.h:
            if hasattr(block.attn, 'bias'):
                block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]

    @classmethod
    def from_pretrained(cls, model_type, override_args=None):
        assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
        override_args = override_args or {} # default to empty dict
        # only dropout can be overridden see more notes below
        assert all(k == 'dropout' for k in override_args)
        from transformers import GPT2LMHeadModel
        log.info("loading weights from pretrained gpt: %s" % model_type)

        # n_layer, n_head and n_embd are determined from model_type
        config_args = {
            'gpt2':         dict(n_layer=12, n_head=12, n_embd=768),  # 124M params
            'gpt2-medium':  dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
            'gpt2-large':   dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
            'gpt2-xl':      dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
        }[model_type]
        log.info("forcing vocab_size=50257, block_size=1024, bias=True")
        config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
        config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
        config_args['bias'] = True # always True for GPT model checkpoints
        # we can override the dropout rate, if desired
        if 'dropout' in override_args:
            log.info(f"overriding dropout rate to {override_args['dropout']}")
            config_args['dropout'] = override_args['dropout']
        # create a from-scratch initialized minGPT model
        config = ModelConfig(**config_args)
        model = GPT(config)
        sd = model.state_dict()
        sd_keys = sd.keys()
        sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param

        # init a huggingface/transformers model
        model_hf = GPT2LMHeadModel.from_pretrained(model_type)
        sd_hf = model_hf.state_dict()

        # copy while ensuring all of the parameters are aligned and match in names and shapes
        sd_keys_hf = sd_hf.keys()
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
        transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
        # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
        # this means that we have to transpose these weights when we import them
        assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
        for k in sd_keys_hf:
            if any(k.endswith(w) for w in transposed):
                # special treatment for the Conv1D weights we need to transpose
                assert sd_hf[k].shape[::-1] == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k].t())
            else:
                # vanilla copy over the other parameters
                assert sd_hf[k].shape == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k])

        return model

    def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
        # start with all of the candidate parameters
        param_dict = {pn: p for pn, p in self.named_parameters()}
        # filter out those that do not require grad
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        log.info(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
        log.info(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == 'cuda'
        extra_args = dict(fused=True) if use_fused else dict()
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
        log.info(f"using fused AdamW: {use_fused}")

        return optimizer

    def estimate_mfu(self, fwdbwd_per_iter, dt):
        """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
        # first estimate the number of flops we do per iteration.
        # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
        N = self.get_num_params()
        cfg = self.config
        L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
        flops_per_token = 6*N + 12*L*H*Q*T
        flops_per_fwdbwd = flops_per_token * T
        flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
        # express our flops throughput as ratio of A100 bfloat16 peak flops
        flops_achieved = flops_per_iter * (1.0/dt) # per second
        flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
        mfu = flops_achieved / flops_promised
        return mfu

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        """
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            # forward the model to get the logits for the index in the sequence
            logits, _ = self(idx_cond)
            # pluck the logits at the final step and scale by desired temperature
            logits = logits[:, -1, :] / temperature
            # optionally crop the logits to only the top k options
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=1)

        return idx
class LayerNorm(nn.Module):
    """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
    def __init__(self, ndim, bias):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, input):
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
class CausalSelfAttention(nn.Module):
    def __init__(self, config: ModelConfig):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        # regularization
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
        # if self.flash and RANK == 0:
        #     log.warning(f'Using torch.nn.functional.scaled_dot_product_attention (Flash Attn)')
        if not self.flash:
            log.warning("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
            # causal mask to ensure that attention is only applied to the left in the input sequence
            self.register_buffer(
                "bias",
                torch.tril(
                    torch.ones(
                        config.block_size,
                        config.block_size
                    )
                ).view(1, 1, config.block_size, config.block_size)
            )

    def forward(self, x):
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        q, k, v  = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        if self.flash:
            # efficient attention using Flash Attention CUDA kernels
            y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
        else:
            # manual implementation of attention
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

        # output projection
        y = self.resid_dropout(self.c_proj(y))
        return y
class MLP(nn.Module):

    def __init__(self, config: ModelConfig):
        super().__init__()
        self.c_fc    = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu    = nn.GELU()
        self.c_proj  = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x

class Block(nn.Module):

    def __init__(self, config: ModelConfig):
        super().__init__()
        self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

trainer.py

    def get_batch(self, split: str) -> tuple[torch.Tensor, torch.Tensor]:
        data = self.config.train_data if split == 'train' else self.config.val_data
        ix = torch.randint(
            len(data) - self.config.model.block_size,
            (self.config.model.batch_size,)
        )
        block_size = self.config.model.block_size
        x = torch.stack(
            [
                torch.from_numpy((data[i:i+block_size]).astype(np.int64))
                for i in ix
            ]
        )
        y = torch.stack(
            [
                torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64))
                for i in ix
            ]
        )
        if self.config.device_type == 'cuda':
            x = x.pin_memory().to(self.config.device_type, non_blocking=True)
            y = y.pin_memory().to(self.config.device_type, non_blocking=True)
        else:
            x = x.to(self.config.device_type)
            y = y.to(self.config.device_type)
        return x, y
    @torch.no_grad()
    def estimate_loss(self):
        out = {}
        self.model.eval()
        for split in ['train', 'val']:
            losses = torch.zeros(self.config.train.eval_iters)
            for k in range(self.config.train.eval_iters):
                x, y = self.get_batch(split)
                with self.config.ctx:
                    _, loss = self.model(x, y)
                losses[k] = loss.item()
            out[split] = losses.mean()
        self.model.train()
        return out
    def _forward_step(self, x: torch.Tensor, y: torch.Tensor) -> dict:
        t0 = time.perf_counter()
        with self.config.ctx:
            logits, loss = self.model(x, y)
        return {
            'logits': logits,
            'loss': loss,
            'dt': time.perf_counter() - t0
        }
    def _backward_step(
            self,
            loss: torch.Tensor,
            propagate_grads: bool = False,
    ) -> float:
        t0 = time.perf_counter()
        self.scaler.scale(loss).backward()  # pyright: ignore
        if propagate_grads:
            if self.config.optimizer.grad_clip != 0.0:
                self.scaler.unscale_(self.optimizer)
                torch.nn.utils.clip_grad_norm_(  # pyright: ignore
                    self.model.parameters(),
                    self.config.optimizer.grad_clip
                )
            self.scaler.step(self.optimizer)
            self.scaler.update()
            self.optimizer.zero_grad(set_to_none=True)

        return time.perf_counter() - t0
    def train_step(
            self,
            x: torch.Tensor,
            y: torch.Tensor,
    ) -> dict:
        lr = (
            self.get_lr(self.config.iter_num)
            if self.config.optimizer.decay_lr
            else self._lr
        )
        for param_group in self.optimizer.param_groups:
            param_group['lr'] = lr
        dtf = []
        dtb = []
        dt = []
        loss = torch.tensor(0.0)
        for micro_step in range(self._gas):
            is_last_micro_step = (micro_step == self._gas - 1)
            # NOTE: -----------------------------------------------------------
            # In DDP training we only need to sync gradients at the last micro
            # step. the official way to do this is with model.no_sync() context
            # manager, but I really dislike that this bloats the code and
            # forces us to repeat code looking at the source of that context
            # manager, it just toggles this variable
            # -----------------------------------------------------------------
            _ = (
                self.model.require_backward_grad_sync
                if (is_last_micro_step and WORLD_SIZE > 1)
                else None
            )
            fout = self._forward_step(x, y)
            # immediately async prefetch next batch while model is doing the forward pass on the GPU
            x, y = self.get_batch('train')
            loss = fout['loss'] / self._gas
            dtf.append(fout['dt'])
            dtb_ = self._backward_step(loss, propagate_grads=is_last_micro_step)
            dtb.append(dtb_)
            dt.append(dtf + dtb)
        timers = {
            'iter': self.config.iter_num,
            'dt': np.array(dt),
            'dt_tot': np.sum(dt),
            'dt_avg': np.mean(dt),
            'dtf': np.array(dtf),
            'dtf_tot': np.sum(dtf),
            'dtf_avg': np.mean(dtf),
            'dtb': np.array(dtb),
            'dtb_tot': np.sum(dtb),
            'dtb_avg': np.mean(dtb)
        }
        metrics = {
            'iter': self.config.iter_num,
            'loss': loss,
            'lr': lr,
        }
        self.config.iter_num += 1
        return {
            'metrics': metrics,
            'timers': timers,
            'x': x,
            'y': y,
        }

Hands-on Tutorial

References

Yang, Jingfeng, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and Xia Hu. 2023. “Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond.” https://arxiv.org/abs/2304.13712.
Yao, Shunyu, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. “Tree of Thoughts: Deliberate Problem Solving with Large Language Models.” https://arxiv.org/abs/2305.10601.