0.12161233612292432
2023-06-05
PASC 23
Left column
Right column
For a demonstration of a line plot on a polar axis, see Figure 1
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams.update({
'axes.facecolor': 'none',
'figure.facecolor': 'none',
'savefig.facecolor': 'none',
'savefig.format': 'svg',
'axes.edgecolor': 'none',
'axes.grid': True,
'axes.labelcolor': '#666',
'axes.titlecolor': '#666',
'grid.color': '#666',
'text.color': '#666',
'grid.linestyle': '--',
'grid.linewidth': 0.5,
'grid.alpha': 0.4,
'xtick.color': 'none',
'ytick.color': 'none',
'xtick.labelcolor': '#666',
'legend.edgecolor': 'none',
'ytick.labelcolor': '#666',
'savefig.transparent': True,
})
r = np.arange(0, 2, 0.01)
theta = 2 * np.pi * r
fix, ax = plt.subplots(
subplot_kw = {'projection': 'polar'}
)
assert isinstance(ax, plt.PolarAxes)
ax.plot(theta, r)
ax.set_rticks([0.5, 1., 1.5, 2.])
ax.grid(True)
plt.show()
flowchart TB A --> C A --> D B --> C B --> D
List One
List Two
Colorbars indicate the quantitative extent of image data. Placing in a figure is non-trivial because room needs to be made for them. The simplest case is just attaching a colorbar to each axes:1.
\[y = w_0 * x_0 + w_1 * x_1 + w_2 * x_2\]
GPU1
GPU2
flowchart LR subgraph X0["GPU0"] direction LR a["w0"] end subgraph X1["GPU1"] direction LR b["w1"] end subgraph X2["GPU2"] direction LR c["w2"] end X1 & X0 <--> X2 X0 <--> X1 x["x0, x1, x2"] --> X0
Note
Note that there are five types of callouts, including: note
, tip
, warning
, caution
, and important
.