Skip to content

Train CNN with FSDP on MNISTΒΆ

See:

ezpz launch python3 -m ezpz.examples.fsdp

HelpΒΆ

--help
$ python3 -m ezpz.examples.fsdp --help
usage: fsdp.py [-h] [--num-workers N]
            [--dataset {MNIST,OpenImages,ImageNet,ImageNet1k}]
            [--batch-size N] [--dtype D] [--test-batch-size N] [--epochs N]
            [--lr LR] [--gamma M] [--seed S] [--save-model]
            [--data-prefix DATA_PREFIX]

PyTorch MNIST Example using FSDP

options:
-h, --help            show this help message and exit
--num-workers N       number of data loading workers (default: 4)
--dataset {MNIST,OpenImages,ImageNet,ImageNet1k}
                        Dataset to use (default: MNIST)
--batch-size N        input batch size for training (default: 64)
--dtype D             Datatype for training (default=bf16).
--test-batch-size N   input batch size for testing (default: 1000)
--epochs N            number of epochs to train (default: 10)
--lr LR               learning rate (default: 1e-3)
--gamma M             Learning rate step gamma (default: 0.7)
--seed S              random seed (default: 1)
--save-model          For Saving the current Model
--data-prefix DATA_PREFIX
                        data directory prefix

OutputΒΆ

Output on Sunspot
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
$ ezpz launch python3 -m ezpz.examples.fsdp

[2025-12-31 12:21:21,523041][I][ezpz/launch:396:launch] ----[πŸ‹ ezpz.launch][started][2025-12-31-122121]----
[2025-12-31 12:21:22,375537][I][ezpz/launch:416:launch] Job ID: 12458339
[2025-12-31 12:21:22,376302][I][ezpz/launch:417:launch] nodelist: ['x1921c0s3b0n0', 'x1921c0s7b0n0']
[2025-12-31 12:21:22,376691][I][ezpz/launch:418:launch] hostfile: /var/spool/pbs/aux/12458339.sunspot-pbs-0001.head.cm.sunspot.alcf.anl.gov
[2025-12-31 12:21:22,377360][I][ezpz/pbs:264:get_pbs_launch_cmd] βœ… Using [24/24] GPUs [2 hosts] x [12 GPU/host]
[2025-12-31 12:21:22,378079][I][ezpz/launch:367:build_executable] Building command to execute by piecing together:
[2025-12-31 12:21:22,378474][I][ezpz/launch:368:build_executable] (1.) launch_cmd: mpiexec --envall --np=24 --ppn=12 --hostfile=/var/spool/pbs/aux/12458339.sunspot-pbs-0001.head.cm.sunspot.alcf.anl.gov --no-vni --cpu-bind=verbose,list:2-4:10-12:18-20:26-28:34-36:42-44:54-56:62-64:70-72:78-80:86-88:94-96
[2025-12-31 12:21:22,379293][I][ezpz/launch:369:build_executable] (2.) cmd_to_launch: python3 -m ezpz.examples.fsdp
[2025-12-31 12:21:22,380037][I][ezpz/launch:433:launch] Took: 1.45 seconds to build command.
[2025-12-31 12:21:22,380393][I][ezpz/launch:436:launch] Executing:
mpiexec
  --envall
  --np=24
  --ppn=12
  --hostfile=/var/spool/pbs/aux/12458339.sunspot-pbs-0001.head.cm.sunspot.alcf.anl.gov
  --no-vni
  --cpu-bind=verbose,list:2-4:10-12:18-20:26-28:34-36:42-44:54-56:62-64:70-72:78-80:86-88:94-96
  python3
  -m
  ezpz.examples.fsdp
[2025-12-31 12:21:22,381628][I][ezpz/launch:443:launch] Execution started @ 2025-12-31-122122...
[2025-12-31 12:21:22,382071][I][ezpz/launch:139:run_command] Running command:
 mpiexec --envall --np=24 --ppn=12 --hostfile=/var/spool/pbs/aux/12458339.sunspot-pbs-0001.head.cm.sunspot.alcf.anl.gov --no-vni --cpu-bind=verbose,list:2-4:10-12:18-20:26-28:34-36:42-44:54-56:62-64:70-72:78-80:86-88:94-96 python3 -m ezpz.examples.fsdp
cpubind:list x1921c0s7b0n0 pid 111174 rank 12 0: mask 0x1c
cpubind:list x1921c0s7b0n0 pid 111175 rank 13 1: mask 0x1c00
cpubind:list x1921c0s7b0n0 pid 111176 rank 14 2: mask 0x1c0000
cpubind:list x1921c0s7b0n0 pid 111177 rank 15 3: mask 0x1c000000
cpubind:list x1921c0s7b0n0 pid 111178 rank 16 4: mask 0x1c00000000
cpubind:list x1921c0s7b0n0 pid 111179 rank 17 5: mask 0x1c0000000000
cpubind:list x1921c0s7b0n0 pid 111180 rank 18 6: mask 0x1c0000000000000
cpubind:list x1921c0s7b0n0 pid 111181 rank 19 7: mask 0x1c000000000000000
cpubind:list x1921c0s7b0n0 pid 111182 rank 20 8: mask 0x1c00000000000000000
cpubind:list x1921c0s7b0n0 pid 111183 rank 21 9: mask 0x1c0000000000000000000
cpubind:list x1921c0s7b0n0 pid 111184 rank 22 10: mask 0x1c000000000000000000000
cpubind:list x1921c0s7b0n0 pid 111185 rank 23 11: mask 0x1c00000000000000000000000
cpubind:list x1921c0s3b0n0 pid 107043 rank 0 0: mask 0x1c
cpubind:list x1921c0s3b0n0 pid 107044 rank 1 1: mask 0x1c00
cpubind:list x1921c0s3b0n0 pid 107045 rank 2 2: mask 0x1c0000
cpubind:list x1921c0s3b0n0 pid 107046 rank 3 3: mask 0x1c000000
cpubind:list x1921c0s3b0n0 pid 107047 rank 4 4: mask 0x1c00000000
cpubind:list x1921c0s3b0n0 pid 107048 rank 5 5: mask 0x1c0000000000
cpubind:list x1921c0s3b0n0 pid 107049 rank 6 6: mask 0x1c0000000000000
cpubind:list x1921c0s3b0n0 pid 107050 rank 7 7: mask 0x1c000000000000000
cpubind:list x1921c0s3b0n0 pid 107051 rank 8 8: mask 0x1c00000000000000000
cpubind:list x1921c0s3b0n0 pid 107052 rank 9 9: mask 0x1c0000000000000000000
cpubind:list x1921c0s3b0n0 pid 107053 rank 10 10: mask 0x1c000000000000000000000
cpubind:list x1921c0s3b0n0 pid 107054 rank 11 11: mask 0x1c00000000000000000000000
[2025-12-31 12:21:26,964250][I][ezpz/dist:1501:setup_torch_distributed] Using torch_{device,backend}= {xpu, xccl}
[2025-12-31 12:21:26,967037][I][ezpz/dist:1366:setup_torch_DDP] Caught MASTER_PORT=41625 from environment!
[2025-12-31 12:21:26,967795][I][ezpz/dist:1382:setup_torch_DDP] Using torch.distributed.init_process_group with
- master_addr='x1921c0s3b0n0'
- master_port='41625'
- world_size=24
- rank=0
- local_rank=0
- timeout=datetime.timedelta(seconds=3600)
- backend='xccl'
[2025-12-31 12:21:26,968707][I][ezpz/dist:1014:init_process_group] Calling torch.distributed.init_process_group_with: rank=0 world_size=24 backend=xccl
[2025-12-31 12:21:27,619965][I][ezpz/dist:1727:setup_torch] Using device='xpu' with backend='xccl' + 'xccl' for distributed training.
[2025-12-31 12:21:27,620787][W][ezpz/dist:544:print_dist_setup] Using [24 / 24] available "xpu" devices !!
[2025-12-31 12:21:27,621230][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=0/1][rank=00/23][local_rank=00/11]
[2025-12-31 12:21:27,620421][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=1/1][rank=01/23][local_rank=01/11]
[2025-12-31 12:21:27,620452][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=0/1][rank=02/23][local_rank=02/11]
[2025-12-31 12:21:27,620445][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=0/1][rank=04/23][local_rank=04/11]
[2025-12-31 12:21:27,620450][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=1/1][rank=05/23][local_rank=05/11]
[2025-12-31 12:21:27,620418][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=0/1][rank=06/23][local_rank=06/11]
[2025-12-31 12:21:27,620439][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=1/1][rank=07/23][local_rank=07/11]
[2025-12-31 12:21:27,620431][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=0/1][rank=08/23][local_rank=08/11]
[2025-12-31 12:21:27,620400][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=1/1][rank=09/23][local_rank=09/11]
[2025-12-31 12:21:27,620398][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=0/1][rank=10/23][local_rank=10/11]
[2025-12-31 12:21:27,620433][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=1/1][rank=11/23][local_rank=11/11]
[2025-12-31 12:21:27,620451][I][ezpz/dist:1774:setup_torch] ['x1921c0s3b0n0'][device='xpu'][node=1/1][rank=03/23][local_rank=03/11]
[2025-12-31 12:21:27,620523][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=0/1][rank=12/23][local_rank=00/11]
[2025-12-31 12:21:27,620546][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=1/1][rank=13/23][local_rank=01/11]
[2025-12-31 12:21:27,620556][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=0/1][rank=14/23][local_rank=02/11]
[2025-12-31 12:21:27,620557][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=0/1][rank=16/23][local_rank=04/11]
[2025-12-31 12:21:27,620568][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=1/1][rank=15/23][local_rank=03/11]
[2025-12-31 12:21:27,620557][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=1/1][rank=17/23][local_rank=05/11]
[2025-12-31 12:21:27,620575][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=1/1][rank=19/23][local_rank=07/11]
[2025-12-31 12:21:27,620556][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=0/1][rank=20/23][local_rank=08/11]
[2025-12-31 12:21:27,620560][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=1/1][rank=21/23][local_rank=09/11]
[2025-12-31 12:21:27,620578][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=0/1][rank=22/23][local_rank=10/11]
[2025-12-31 12:21:27,620579][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=1/1][rank=23/23][local_rank=11/11]
[2025-12-31 12:21:27,620579][I][ezpz/dist:1774:setup_torch] ['x1921c0s7b0n0'][device='xpu'][node=0/1][rank=18/23][local_rank=06/11]
[2025-12-31 12:21:28,206982][I][ezpz/dist:2039:setup_wandb] Setting up wandb from rank=0
[2025-12-31 12:21:28,207580][I][ezpz/dist:2040:setup_wandb] Using WB_PROJECT=ezpz.examples.fsdp
wandb: Currently logged in as: foremans (aurora_gpt) to https://api.wandb.ai. Use `wandb login --relogin` to force relogin
wandb: Tracking run with wandb version 0.23.1
wandb: Run data is saved locally in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/wandb/run-20251231_122128-11cqdt05
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run vivid-glade-86
wandb:  View project at https://wandb.ai/aurora_gpt/ezpz.examples.fsdp
wandb:  View run at https://wandb.ai/aurora_gpt/ezpz.examples.fsdp/runs/11cqdt05
[2025-12-31 12:21:29,790902][I][ezpz/dist:2069:setup_wandb] wandb.run=[vivid-glade-86](https://wandb.ai/aurora_gpt/ezpz.examples.fsdp/runs/11cqdt05)
[2025-12-31 12:21:29,796125][I][ezpz/dist:2112:setup_wandb] Running on machine='SunSpot'
[2025-12-31 12:21:30,092593][I][examples/fsdp:196:prepare_model_optimizer_and_scheduler] 
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Net                                      --
β”œβ”€Conv2d: 1-1                            320
β”œβ”€Conv2d: 1-2                            18,496
β”œβ”€Dropout: 1-3                           --
β”œβ”€Dropout: 1-4                           --
β”œβ”€Linear: 1-5                            1,179,776
β”œβ”€Linear: 1-6                            1,290
=================================================================
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0
=================================================================
[2025-12-31 12:21:30,134352][I][examples/fsdp:212:prepare_model_optimizer_and_scheduler] model=FullyShardedDataParallel(
  (_fsdp_wrapped_module): Net(
    (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
    (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
    (dropout1): Dropout(p=0.25, inplace=False)
    (dropout2): Dropout(p=0.5, inplace=False)
    (fc1): Linear(in_features=9216, out_features=128, bias=True)
    (fc2): Linear(in_features=128, out_features=10, bias=True)
  )
)
[2025-12-31 12:21:30,173375][I][ezpz/history:220:__init__] Using History with distributed_history=True
2025:12:31-12:21:30:(107043) |CCL_WARN| value of CCL_OP_SYNC changed to be 1 (default:0)
2025:12:31-12:21:30:(107043) |CCL_WARN| value of CCL_PROCESS_LAUNCHER changed to be pmix (default:hydra)
[2025-12-31 12:21:55,502783][I][examples/fsdp:340:fsdp_main] epoch=1 dt=12.487221 train_loss=0.596659 test_loss=0.143485 test_acc=95.563553 dt/mean=11.990577 dt/max=12.487222 dt/min=11.897395 dt/std=0.119125 train_loss/mean=0.596659 train_loss/max=0.596659 train_loss/min=0.596659 train_loss/std=0.000173 test_loss/mean=0.143485 test_loss/max=0.143485 test_loss/min=0.143485 test_loss/std=0.000000 test_acc/mean=95.563560 test_acc/max=95.563553 test_acc/min=95.563553 test_acc/std=0.000000
[2025-12-31 12:21:55,911549][I][examples/fsdp:340:fsdp_main] epoch=2 dt=0.361235 train_loss=0.174450 test_loss=0.080361 test_acc=97.511993 dt/mean=0.365279 dt/max=0.373996 dt/min=0.355496 dt/std=0.005433 train_loss/mean=0.174450 train_loss/max=0.174450 train_loss/min=0.174450 train_loss/std=0.000000 test_loss/mean=0.080361 test_loss/max=0.080361 test_loss/min=0.080361 test_loss/std=0.000022 test_acc/mean=97.511993 test_acc/max=97.511993 test_acc/min=97.511993 test_acc/std=0.000000
[2025-12-31 12:21:56,308947][I][examples/fsdp:340:fsdp_main] epoch=3 dt=0.359641 train_loss=0.120487 test_loss=0.060764 test_acc=98.021584 dt/mean=0.358203 dt/max=0.361614 dt/min=0.353194 dt/std=0.002922 train_loss/mean=0.120487 train_loss/max=0.120487 train_loss/min=0.120487 train_loss/std=0.000000 test_loss/mean=0.060764 test_loss/max=0.060764 test_loss/min=0.060764 test_loss/std=0.000015 test_acc/mean=98.021591 test_acc/max=98.021584 test_acc/min=98.021584 test_acc/std=0.000000
[2025-12-31 12:21:56,703145][I][examples/fsdp:340:fsdp_main] epoch=4 dt=0.356608 train_loss=0.098917 test_loss=0.052346 test_acc=98.301361 dt/mean=0.356618 dt/max=0.359070 dt/min=0.353434 dt/std=0.001995 train_loss/mean=0.098917 train_loss/max=0.098917 train_loss/min=0.098917 train_loss/std=0.000000 test_loss/mean=0.052346 test_loss/max=0.052346 test_loss/min=0.052346 test_loss/std=0.000000 test_acc/mean=98.301361 test_acc/max=98.301361 test_acc/min=98.301361 test_acc/std=0.031250
[2025-12-31 12:21:57,100230][I][examples/fsdp:340:fsdp_main] epoch=5 dt=0.357687 train_loss=0.085740 test_loss=0.047243 test_acc=98.441246 dt/mean=0.356900 dt/max=0.360295 dt/min=0.352879 dt/std=0.002699 train_loss/mean=0.085740 train_loss/max=0.085740 train_loss/min=0.085740 train_loss/std=0.000000 test_loss/mean=0.047243 test_loss/max=0.047243 test_loss/min=0.047243 test_loss/std=0.000000 test_acc/mean=98.441246 test_acc/max=98.441246 test_acc/min=98.441246 test_acc/std=0.000000
[2025-12-31 12:21:57,497234][I][examples/fsdp:340:fsdp_main] epoch=6 dt=0.357410 train_loss=0.080569 test_loss=0.044845 test_acc=98.471222 dt/mean=0.356574 dt/max=0.359746 dt/min=0.353584 dt/std=0.002156 train_loss/mean=0.080569 train_loss/max=0.080569 train_loss/min=0.080569 train_loss/std=0.000000 test_loss/mean=0.044845 test_loss/max=0.044845 test_loss/min=0.044845 test_loss/std=0.000015 test_acc/mean=98.471222 test_acc/max=98.471222 test_acc/min=98.471222 test_acc/std=0.000000
[2025-12-31 12:21:57,893327][I][examples/fsdp:340:fsdp_main] epoch=7 dt=0.355675 train_loss=0.075174 test_loss=0.043703 test_acc=98.481216 dt/mean=0.356044 dt/max=0.358311 dt/min=0.353675 dt/std=0.001370 train_loss/mean=0.075174 train_loss/max=0.075174 train_loss/min=0.075174 train_loss/std=0.000022 test_loss/mean=0.043703 test_loss/max=0.043703 test_loss/min=0.043703 test_loss/std=0.000011 test_acc/mean=98.481224 test_acc/max=98.481216 test_acc/min=98.481216 test_acc/std=0.000000
[2025-12-31 12:21:58,292161][I][examples/fsdp:340:fsdp_main] epoch=8 dt=0.358490 train_loss=0.073104 test_loss=0.041848 test_acc=98.551163 dt/mean=0.359055 dt/max=0.362143 dt/min=0.355792 dt/std=0.001879 train_loss/mean=0.073104 train_loss/max=0.073104 train_loss/min=0.073104 train_loss/std=0.000022 test_loss/mean=0.041848 test_loss/max=0.041848 test_loss/min=0.041848 test_loss/std=0.000000 test_acc/mean=98.551170 test_acc/max=98.551163 test_acc/min=98.551163 test_acc/std=0.000000
[2025-12-31 12:21:58,692175][I][examples/fsdp:340:fsdp_main] epoch=9 dt=0.359963 train_loss=0.069403 test_loss=0.041198 test_acc=98.571144 dt/mean=0.360091 dt/max=0.363091 dt/min=0.356911 dt/std=0.001945 train_loss/mean=0.069403 train_loss/max=0.069403 train_loss/min=0.069403 train_loss/std=0.000022 test_loss/mean=0.041198 test_loss/max=0.041198 test_loss/min=0.041198 test_loss/std=0.000011 test_acc/mean=98.571152 test_acc/max=98.571144 test_acc/min=98.571144 test_acc/std=0.000000
[2025-12-31 12:21:59,091674][I][examples/fsdp:340:fsdp_main] epoch=10 dt=0.358637 train_loss=0.068348 test_loss=0.041941 test_acc=98.571144 dt/mean=0.358994 dt/max=0.361870 dt/min=0.356423 dt/std=0.001696 train_loss/mean=0.068348 train_loss/max=0.068348 train_loss/min=0.068348 train_loss/std=0.000000 test_loss/mean=0.041941 test_loss/max=0.041941 test_loss/min=0.041941 test_loss/std=0.000000 test_acc/mean=98.571152 test_acc/max=98.571144 test_acc/min=98.571144 test_acc/std=0.000000
[2025-12-31 12:21:59,093446][I][examples/fsdp:342:fsdp_main] 11 epochs took 28.9s
[2025-12-31 12:21:59,124624][I][ezpz/history:2385:finalize] Saving plots to /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/mplot (matplotlib) and /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot (tplot)
                     dt                                    dt/min
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
12.5β”€β–Œ                                 β”‚11.9─-                                 β”‚
10.5β”€β–š                                 β”‚ 8.0─ -                                β”‚
    │▝▖                                β”‚ 4.2─  -                               β”‚
 8.4─ β–Œ                                β”‚ 0.4─   -------------------------------β”‚
 6.4─ ▐                                β”‚    β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
 4.4─  β–Œ                               β”‚    1.0     3.2      5.5     7.8   10.0
    β”‚  β–š                               β”‚dt/min              iter
 2.4─  ▝▖                              β”‚                   dt/std
 0.4─   β–šβ–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜0.119─*                                β”‚
    1.0     3.2      5.5     7.8   10.0 0.099─ *                               β”‚
dt                  iter                0.060─  *                              β”‚
                   dt/mean              0.041─   *                             β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”0.001─    *****************************β”‚
12.0─·                                 β”‚     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
10.1─·                                 β”‚     1.0     3.2     5.5     7.8   10.0
    β”‚Β·                                 β”‚dt/std              iter
 8.1─ Β·                                β”‚                   dt/max
 6.2─ Β·                                β”‚    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  Β·                               β”‚12.5─+                                 β”‚
 4.2─  Β·                               β”‚10.5─ +                                β”‚
 2.3─   Β·                              β”‚ 6.4─  +                               β”‚
    β”‚   Β·                              β”‚ 4.4─   +                              β”‚
 0.4─    Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·β”‚ 0.4─    ++++++++++++++++++++++++++++++β”‚
    β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜    β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
    1.0     3.2      5.5     7.8   10.0     1.0     3.2      5.5     7.8   10.0
dt/mean             iter                dt/max              iter
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/dt.txt
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
12.5─ ++ dt/max                                                                β”‚
    β”‚ -- dt/min                                                                β”‚
    β”‚ Β·Β· dt/mean                                                               β”‚
    β”‚ β–žβ–ž dt                                                                    β”‚
10.5─ β–Œ                                                                        β”‚
    β”‚ ▐                                                                        β”‚
    β”‚ ▝▖                                                                       β”‚
    β”‚  β–Œ                                                                       β”‚
 8.4─  ▐                                                                       β”‚
    β”‚  ▐                                                                       β”‚
    β”‚   β–Œ                                                                      β”‚
    β”‚   β–š                                                                      β”‚
 6.4─   ▐                                                                      β”‚
    β”‚    β–Œ                                                                     β”‚
    β”‚    β–š                                                                     β”‚
    β”‚    ▐                                                                     β”‚
    β”‚     β–Œ                                                                    β”‚
 4.4─     β–Œ                                                                    β”‚
    β”‚     ▐                                                                    β”‚
    β”‚     ▝▖                                                                   β”‚
    β”‚      β–Œ                                                                   β”‚
 2.4─      ▐                                                                   β”‚
    β”‚      ▝▖                                                                  β”‚
    β”‚       β–Œ                                                                  β”‚
    β”‚       ▐                                                                  β”‚
 0.4─       ▝▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│
    β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
    1.0               3.2                5.5               7.8             10.0
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/dt_summary.txt
               dt/mean hist                             dt/max hist
   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
9.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚9.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
7.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚7.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
6.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚6.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
4.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚4.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
3.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚3.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
1.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚1.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                           β–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                           β–ˆβ–ˆβ–ˆβ–ˆβ”‚
0.0β”€β–ˆβ–ˆβ–ˆ                            β–ˆβ–ˆβ–ˆβ–ˆβ”‚0.0β”€β–ˆβ–ˆβ–ˆ                            β–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
  -0.2      3.0     6.2      9.3   12.5   -0.2      3.1     6.4      9.7   13.0
                dt/min hist                             dt/std hist
   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
9.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚9.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
7.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚7.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
6.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚6.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
4.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚4.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
3.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚3.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
1.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚1.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                           β–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                           β–ˆβ–ˆβ–ˆβ–ˆβ”‚
0.0β”€β–ˆβ–ˆβ–ˆ                            β–ˆβ–ˆβ–ˆβ–ˆβ”‚0.0β”€β–ˆβ–ˆβ–ˆ                            β–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
  -0.2      3.0     6.1      9.3   12.4   -0.004   0.028   0.060    0.092 0.124
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/dt_hist.txt
                  test_acc                              test_acc/min
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
98.57─              β–—β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–žβ–€β–€β–€β–€β–€β–€β–€β”‚98.57─           ----------------------β”‚
98.07─       β–„β–„β–„β–„β–€β–€β–€β–˜                  β”‚97.57─    -------                      β”‚
     β”‚     β–„β–€                          β”‚96.57─  --                             β”‚
97.57─   β–žβ–€                            β”‚95.56─--                               β”‚
97.07─  ▐                              β”‚     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
96.57─ β–—β–˜                              β”‚     1.0     3.2     5.5     7.8   10.0
     β”‚ β–ž                               β”‚test_acc/min        iter
96.06─▐                                β”‚                 test_acc/std
95.56β”€β–Œ                                β”‚      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜0.0312─          *                     β”‚
     1.0     3.2     5.5     7.8   10.0 0.0260─         * *                    β”‚
test_acc            iter                0.0156─        *   *                   β”‚
                test_acc/mean           0.0104─       *     *                  β”‚
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”0.0000─********      ******************β”‚
98.57─              Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·β”‚      β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
98.07─           Β·Β·Β·                   β”‚      1.0     3.2     5.5    7.8   10.0
     β”‚       Β·Β·Β·Β·                      β”‚test_acc/std         iter
97.57─    Β·Β·Β·                          β”‚                test_acc/max
97.07─   Β·                             β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β”‚  Β·                              β”‚98.57─           ++++++++++++++++++++++β”‚
96.57─  Β·                              β”‚98.07─    +++++++                      β”‚
96.06─ Β·                               β”‚97.07─   +                             β”‚
     β”‚Β·                                β”‚96.57─  +                              β”‚
95.56─·                                β”‚95.56─++                               β”‚
     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
     1.0     3.2     5.5     7.8   10.0      1.0     3.2     5.5     7.8   10.0
test_acc/mean       iter                test_acc/max        iter
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/test_acc.txt
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
98.57─ ++ test_acc/max                                    β–—β–„β–„β–„β–žβ–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β”‚
     β”‚ -- test_acc/min             β–—β–„β–„β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–˜Β·Β·Β·                 β”‚
     β”‚ Β·Β· test_acc/mean       β–„β–„β–„β–€β–€β–˜Β·Β·                                         β”‚
     β”‚ β–žβ–ž test_acc        β–„β–„β–€β–€                                                 β”‚
98.07─                β–„β–„β–€β–€Β·Β·                                                   β”‚
     β”‚              β–—β–žΒ·Β·Β·                                                      β”‚
     β”‚            β–—β–žβ–˜Β·                                                         β”‚
     β”‚           β–„β–˜Β·                                                           β”‚
97.57─         β–„β–€Β·                                                             β”‚
     β”‚       β–—β–€Β·                                                               β”‚
     β”‚       β–ž                                                                 β”‚
     β”‚      β–—β–˜                                                                 β”‚
97.07─      β–ž                                                                  β”‚
     β”‚     β–—β–˜                                                                  β”‚
     β”‚     β–ž                                                                   β”‚
     β”‚    β–—β–˜                                                                   β”‚
     β”‚    β–ž                                                                    β”‚
96.57─   β–—β–˜                                                                    β”‚
     β”‚   β–ž                                                                     β”‚
     β”‚  β–—β–˜                                                                     β”‚
     β”‚  β–ž                                                                      β”‚
96.06─ β–—β–˜                                                                      β”‚
     β”‚ β–ž                                                                       β”‚
     β”‚β–—β–˜                                                                       β”‚
     β”‚β–ž                                                                        β”‚
95.56β”€β–Œ                                                                        β”‚
     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
     1.0               3.2               5.5               7.8             10.0
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/test_acc_summary.txt
            test_acc/mean hist                       test_acc/max hist
   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
7.0─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚7.0─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚
5.8─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚5.8─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β”‚                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚
4.7─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚4.7─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚
3.5─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚3.5─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β”‚                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚
2.3─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚2.3─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚
1.2─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚1.2─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                 β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                 β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
0.0β”€β–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚0.0β”€β–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
  95.4     96.2    97.1     97.9   98.7   95.4     96.2    97.1     97.9   98.7
             test_acc/min hist                       test_acc/std hist
   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
7.0─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚9.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
5.8─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚7.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
4.7─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚6.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
3.5─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚4.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
2.3─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚3.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
1.2─                               β–ˆβ–ˆβ–ˆβ–ˆβ”‚1.5β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                 β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                           β–ˆβ–ˆβ–ˆβ–ˆβ”‚
0.0β”€β–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚0.0β”€β–ˆβ–ˆβ–ˆ                            β–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  95.4     96.2    97.1     97.9   98.7   -0.0014  0.0071  0.0156  0.0241
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/test_acc_hist.txt
                  test_loss                             test_loss/min
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
0.143β”€β–Œ                                β”‚0.143─-                                β”‚
0.126─▝▖                               β”‚0.109─ --                              β”‚
     β”‚ β–š                               β”‚0.075─   -----                         β”‚
0.109─  β–Œ                              β”‚0.041─        -------------------------β”‚
0.092─  ▝▖                             β”‚     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
0.075─   ▝▖                            β”‚     1.0     3.2     5.5     7.8   10.0
     β”‚    β–β–šβ––                          β”‚test_loss/min       iter
0.058─      β–β–šβ–„β–„β–„β––                     β”‚                  test_loss/std
0.041─           β–β–€β–€β–€β–€β–€β–€β–šβ–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜0.0000216─   *                         β”‚
     1.0     3.2     5.5     7.8   10.0 0.0000180─  * ***         *            β”‚
test_loss           iter                0.0000108─ *     *       * ***     *   β”‚
               test_loss/mean           0.0000072─*       *     *     *   * *  β”‚
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”0.0000000─*        *****       ***   **β”‚
0.143─·                                β”‚         β””β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”˜
0.126─·                                β”‚         1.0    3.2    5.5    7.8  10.0
     β”‚ Β·                               β”‚test_loss/std         iter
0.109─  Β·                              β”‚                test_loss/max
0.092─  Β·                              β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β”‚   Β·                             β”‚0.143─+                                β”‚
0.075─    Β·                            β”‚0.126─ ++                              β”‚
0.058─     Β·Β·Β·                         β”‚0.092─   ++                            β”‚
     β”‚        Β·Β·Β·Β·Β·Β·Β·                  β”‚0.075─     +++                         β”‚
0.041─               Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·β”‚0.041─        +++++++++++++++++++++++++β”‚
     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
     1.0     3.2     5.5     7.8   10.0      1.0     3.2     5.5     7.8   10.0
test_loss/mean      iter                test_loss/max       iter
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/test_loss.txt
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
0.143─ ++ test_loss/max                                                        β”‚
     β”‚ -- test_loss/min                                                        β”‚
     β”‚ Β·Β· test_loss/mean                                                       β”‚
     β”‚ β–žβ–ž test_loss                                                            β”‚
0.126─  β–Œ                                                                      β”‚
     β”‚  ▐                                                                      β”‚
     β”‚   β–Œ                                                                     β”‚
     β”‚   ▐                                                                     β”‚
0.109─    β–Œ                                                                    β”‚
     β”‚    ▐                                                                    β”‚
     β”‚     β–Œ                                                                   β”‚
     β”‚     ▐                                                                   β”‚
0.092─      β–Œ                                                                  β”‚
     β”‚      ▐                                                                  β”‚
     β”‚       β–Œ                                                                 β”‚
     β”‚       ▝▖                                                                β”‚
     β”‚        ▝▄                                                               β”‚
0.075─          β–šβ––                                                             β”‚
     β”‚           β–β–š                                                            β”‚
     β”‚             β–€β––                                                          β”‚
     β”‚              β–β–šβ––                                                        β”‚
0.058─                β–β–€β–šβ–„β––                                                    β”‚
     β”‚                    β–β–€β–šβ–„β––                                                β”‚
     β”‚                        ▝▀▀▄▄▖                                           β”‚
     β”‚                             β–β–€β–€β–šβ–„β–„β–„β–„β–„β–„β–„β–„Β·Β·Β·Β·Β·Β·Β·Β·                        β”‚
0.041─                                         β–€β–€β–€β–€β–€β–€β–€β–€β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β”‚
     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
     1.0               3.2               5.5               7.8             10.0
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/test_loss_summary.txt
           test_loss/mean hist                     test_loss/max hist
 β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
6β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚6β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
5β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚5β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
 β”‚β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚ β”‚β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
4β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚4β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
3β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚3β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
 β”‚β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚ β”‚β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
2β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                             β”‚2β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                             β”‚
1β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆβ–ˆβ”‚1β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆβ–ˆβ”‚
 β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆβ–ˆβ”‚ β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆβ–ˆβ”‚
0β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆβ–ˆβ”‚0β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆβ–ˆβ”‚
 β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜ β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
 0.037   0.064    0.092    0.120  0.148  0.037   0.064    0.092    0.120  0.148
           test_loss/min hist                        test_loss/std hist
 β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
6β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚5.00β”€β–ˆβ–ˆβ–ˆβ–ˆ                              β”‚
 β”‚β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚    β”‚β–ˆβ–ˆβ–ˆβ–ˆ                              β”‚
5β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚4.17β”€β–ˆβ–ˆβ–ˆβ–ˆ                              β”‚
4β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚3.33β”€β–ˆβ–ˆβ–ˆβ–ˆ                              β”‚
 β”‚β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚    β”‚β–ˆβ–ˆβ–ˆβ–ˆ                              β”‚
3β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚2.50β”€β–ˆβ–ˆβ–ˆβ–ˆ                              β”‚
 β”‚β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚    β”‚β–ˆβ–ˆβ–ˆβ–ˆ             β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆ       β”‚
2β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                             β”‚1.67β”€β–ˆβ–ˆβ–ˆβ–ˆ             β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆ       β”‚
1β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆβ–ˆβ”‚0.83β”€β–ˆβ–ˆβ–ˆβ–ˆ             β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆβ”‚
 β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆβ–ˆβ”‚    β”‚β–ˆβ–ˆβ–ˆβ–ˆ             β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆβ”‚
0β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆβ–ˆ                  β–ˆβ–ˆβ–ˆβ–ˆβ”‚0.00β”€β–ˆβ–ˆβ–ˆ              β–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆβ”‚
 β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜    β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
 0.037   0.064    0.092    0.120  0.148   -0.0000010      0.0000108 0.0000167
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/test_loss_hist.txt
                 train_loss                            train_loss/min
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
0.597β”€β–Œ                                β”‚0.597─-                                β”‚
0.509─▐                                β”‚0.421─ --                              β”‚
     β”‚ β–Œ                               β”‚0.244─   --                            β”‚
0.421─ ▐                               β”‚0.068─     ----------------------------β”‚
0.333─  β–Œ                              β”‚     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
0.244─  ▐                              β”‚     1.0     3.2     5.5     7.8   10.0
     β”‚   β–Œ                             β”‚train_loss/min      iter
0.156─   ▝▄▄▄▖                         β”‚                 train_loss/std
0.068─       ▝▀▀▀▀▀▀▀▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜0.000173─*                             β”‚
     1.0     3.2     5.5     7.8   10.0 0.000144─*                             β”‚
train_loss          iter                0.000086─ *                            β”‚
               train_loss/mean          0.000058─  *                ********   β”‚
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”0.000000─   ****************        ***β”‚
0.597─·                                β”‚        β””β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”˜
0.509─·                                β”‚        1.0    3.2     5.5    7.8  10.0
     β”‚ Β·                               β”‚train_loss/std        iter
0.421─ Β·                               β”‚               train_loss/max
0.333─  Β·                              β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β”‚  Β·                              β”‚0.597─+                                β”‚
0.244─   Β·                             β”‚0.509─ +                               β”‚
0.156─    Β·                            β”‚0.333─  +                              β”‚
     β”‚     Β·Β·Β·Β·Β·Β·Β·                     β”‚0.244─   ++                            β”‚
0.068─            Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·β”‚0.068─     ++++++++++++++++++++++++++++β”‚
     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
     1.0     3.2     5.5     7.8   10.0      1.0     3.2     5.5     7.8   10.0
train_loss/mean     iter                train_loss/max      iter
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/train_loss.txt
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
0.597─ ++ train_loss/max                                                       β”‚
     β”‚ -- train_loss/min                                                       β”‚
     β”‚ Β·Β· train_loss/mean                                                      β”‚
     β”‚ β–žβ–ž train_loss                                                           β”‚
0.509─ ▐                                                                       β”‚
     β”‚ ▝▖                                                                      β”‚
     β”‚  β–š                                                                      β”‚
     β”‚  ▐                                                                      β”‚
0.421─   β–Œ                                                                     β”‚
     β”‚   ▐                                                                     β”‚
     β”‚   ▝▖                                                                    β”‚
     β”‚    β–Œ                                                                    β”‚
0.333─    ▐                                                                    β”‚
     β”‚     β–Œ                                                                   β”‚
     β”‚     β–š                                                                   β”‚
     β”‚     ▝▖                                                                  β”‚
     β”‚      β–Œ                                                                  β”‚
0.244─      ▐                                                                  β”‚
     β”‚       β–Œ                                                                 β”‚
     β”‚       β–š                                                                 β”‚
     β”‚       ▝▖                                                                β”‚
0.156─        ▝▀▄▖                                                             β”‚
     β”‚           ▝▀▄▖                                                          β”‚
     β”‚              β–β–€β–šβ–„β–„β–„β––                                                    β”‚
     β”‚                 Β·Β·Β·β–β–€β–€β–€β–šβ–„β–„β–„β–„β–„β–„β–„β––Β·Β·Β·Β·Β·Β·Β·Β·                                β”‚
0.068─                                ▝▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│
     β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
     1.0               3.2               5.5               7.8             10.0
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/train_loss_summary.txt
           train_loss/mean hist                     train_loss/max hist
   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
8.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚8.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
6.7β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚6.7β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
5.3β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚5.3β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
4.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚4.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
2.7β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚2.7β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
1.3β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚1.3β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆ                    β–ˆβ–ˆβ–ˆβ–ˆβ”‚   β”‚β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆ                    β–ˆβ–ˆβ–ˆβ–ˆβ”‚
0.0β”€β–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆ                     β–ˆβ–ˆβ–ˆβ–ˆβ”‚0.0β”€β–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆ                     β–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
  0.04     0.19    0.33     0.48   0.62   0.04     0.19    0.33     0.48   0.62
            train_loss/min hist                    train_loss/std hist
   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
8.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚6β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚ β”‚β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
6.7β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚5β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
5.3β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚4β”€β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚ β”‚β–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
4.0β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚3β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                             β”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚ β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                             β”‚
2.7β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚2β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                             β”‚
1.3β”€β–ˆβ–ˆβ–ˆβ–ˆ                               β”‚1β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                         β–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β”‚β–ˆβ–ˆβ–ˆβ–ˆ   β–ˆβ–ˆβ–ˆβ–ˆ                    β–ˆβ–ˆβ–ˆβ–ˆβ”‚ β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                         β–ˆβ–ˆβ–ˆβ–ˆβ”‚
0.0β”€β–ˆβ–ˆβ–ˆ    β–ˆβ–ˆβ–ˆ                     β–ˆβ–ˆβ–ˆβ–ˆβ”‚0β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                          β–ˆβ–ˆβ–ˆβ–ˆβ”‚
   β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”˜ β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  0.04     0.19    0.33     0.48   0.62  -0.000008      0.000086  0.000133
text saved in /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/plots/tplot/train_loss_hist.txt
[2025-12-31 12:22:03,182749][W][ezpz/history:2320:save_dataset] Unable to save dataset to W&B, skipping!
[2025-12-31 12:22:03,184704][I][utils/__init__:651:dataset_to_h5pyfile] Saving dataset to: /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/train_dataset.h5
[2025-12-31 12:22:03,196685][I][ezpz/history:2433:finalize] Saving history report to /lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz-fsdp/2025-12-31-122159/report.md
[2025-12-31 12:22:03,202017][I][examples/fsdp:360:fsdp_main] dataset=<xarray.Dataset> Size: 2kB
Dimensions:          (draw: 10)
Coordinates:
  * draw             (draw) int64 80B 0 1 2 3 4 5 6 7 8 9
Data variables: (12/25)
    epoch            (draw) int64 80B 1 2 3 4 5 6 7 8 9 10
    dt               (draw) float64 80B 12.49 0.3612 0.3596 ... 0.36 0.3586
    train_loss       (draw) float32 40B 0.5967 0.1744 0.1205 ... 0.0694 0.06835
    test_loss        (draw) float32 40B 0.1435 0.08036 ... 0.0412 0.04194
    test_acc         (draw) float32 40B 95.56 97.51 98.02 ... 98.55 98.57 98.57
    epoch_mean       (draw) float64 80B 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
    ...               ...
    test_loss_min    (draw) float64 80B 0.1435 0.08036 ... 0.0412 0.04194
    test_loss_std    (draw) float64 80B 0.0 2.158e-05 ... 1.079e-05 0.0
    test_acc_mean    (draw) float64 80B 95.56 97.51 98.02 ... 98.55 98.57 98.57
    test_acc_max     (draw) float64 80B 95.56 97.51 98.02 ... 98.55 98.57 98.57
    test_acc_min     (draw) float64 80B 95.56 97.51 98.02 ... 98.55 98.57 98.57
    test_acc_std     (draw) float64 80B 0.0 0.0 0.0 0.03125 ... 0.0 0.0 0.0 0.0
[2025-12-31 12:22:03,205311][I][examples/fsdp:452:<module>] Took 36.24 seconds
wandb:
wandb: πŸš€ View run vivid-glade-86 at: 
wandb: Find logs at: ../../../../../../lus/tegu/projects/datascience/foremans/projects/saforem2/ezpz/wandb/run-20251231_122128-11cqdt05/logs
[2025-12-31 12:22:04,704632][I][ezpz/launch:447:launch] ----[πŸ‹ ezpz.launch][stop][2025-12-31-122204]----
[2025-12-31 12:22:04,705324][I][ezpz/launch:448:launch] Execution finished with 0.
[2025-12-31 12:22:04,705724][I][ezpz/launch:449:launch] Executing finished in 42.32 seconds.
[2025-12-31 12:22:04,706075][I][ezpz/launch:450:launch] Took 42.32 seconds to run. Exiting.