ezpz.dist
¶
- See:
ezpz.dist
dist.py
Contains methods for initializing distributed communication.
barrier(device=None, group=torch.distributed.GroupMember.WORLD, async_op=False, device_ids=None)
¶
Barrier for all processes in the group.
This collective blocks processes until the whole group enters this function, if async_op is False, or if async work handle is called on wait().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
device | int | str
|
The device to synchronize. If None, the default device will be used. Defaults to None. |
None
|
group
|
ProcessGroup | None
|
The process group to work on. If None, the default process group (WORLD) will be used. Defaults to torch.distributed.GroupMember.WORLD. |
WORLD
|
async_op
|
bool
|
If True, the barrier will be asynchronous. |
False
|
device_ids
|
str | Iterable | None
|
The device IDs to synchronize. |
None
|
Returns:
Type | Description |
---|---|
Work | None
|
torch.distributed.Work | None: If async_op is True, returns a work handle. If async_op is False, returns None. |
Source code in src/ezpz/dist.py
check(framework='pytorch', backend='deepspeed', port='5432')
¶
Check if the framework is installed and working
Source code in src/ezpz/dist.py
cleanup()
¶
Cleanup the distributed environment. This function destroys the process group if it is initialized.
Example
cleanup()
Source code in src/ezpz/dist.py
get_cpus_per_node()
¶
get_dist_info(framework=None, verbose=None, hostfile=None)
¶
Get distributed info.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
framework
|
str
|
Framework to use. Defaults to None. |
None
|
verbose
|
bool
|
Whether to print the info. Defaults to None. |
None
|
hostfile
|
PathLike
|
Path to the hostfile. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
dict |
dict[str, str | int | list]
|
Dictionary containing the distributed info. |
Source code in src/ezpz/dist.py
get_free_port()
¶
Get a free port on the local machine.
Returns:
Name | Type | Description |
---|---|---|
int |
A free port number that can be used for communication. |
Source code in src/ezpz/dist.py
get_gpus_per_node()
¶
Get the number of GPUs per node
Source code in src/ezpz/dist.py
get_hostfile_with_fallback(hostfile=None)
¶
Get the hostfile from the environment or create one if it doesn't exist
Source code in src/ezpz/dist.py
get_hostname()
¶
Get the hostname of the current machine.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The hostname of the current machine. |
Source code in src/ezpz/dist.py
get_hosts_from_hostfile(hostfile=None)
¶
Get hosts from the hostfile or environment variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hostfile
|
str | Path
|
Path to the hostfile. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
tuple[str, list[str]]
|
tuple[str, list[str]]: Tuple containing the hostfile path and a list of hosts. |
Example
get_hosts_from_hostfile("/path/to/hostfile") ('/path/to/hostfile', ['host1', 'host2', ...])
Source code in src/ezpz/dist.py
get_local_rank()
¶
Return get_rank() % get_gpus_per_node()
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
The local rank of the current process within its node. This is calculated as the current rank modulo the number of GPUs per node. |
Example
local_rank = get_local_rank() print(f"Local rank of the current process: {local_rank}")
Source code in src/ezpz/dist.py
get_machine(hostname=None)
¶
Get the machine name from the hostname.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hostname
|
str
|
The hostname to check. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The machine name. |
Example
get_machine("frontier") "Frontier"
Source code in src/ezpz/dist.py
get_node_index()
¶
get_nodes_from_hostfile(hostfile)
¶
Get the nodes from the hostfile.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hostfile
|
PathLike
|
The path to the hostfile. |
required |
Returns:
Type | Description |
---|---|
list[str]
|
list[str]: A list of nodes from the hostfile. |
Source code in src/ezpz/dist.py
get_num_nodes(hostfile=None)
¶
Get the number of nodes from the hostfile
Source code in src/ezpz/dist.py
get_rank()
¶
Get current MPI rank.
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
The rank of the current process in the MPI world. |
Example
rank = get_rank() print(f"Current MPI rank: {rank}")
get_torch_backend()
¶
Get the current PyTorch backend.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The current PyTorch backend. |
Source code in src/ezpz/dist.py
get_torch_backend_on_xpu()
¶
Deal with breaking change introduced in torch 2.6:
See: https://github.com/pytorch/pytorch/pull/141856
Example:
1 2 3 4 5 6 7 |
|
Source code in src/ezpz/dist.py
get_torch_device(*, device_type=None, as_torch_device=None)
¶
Get the current PyTorch device.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device_type
|
str
|
The type of device to return. If None, it will be determined automatically. Defaults to None. |
None
|
as_torch_device
|
bool
|
If True, return a torch.device object. If False, return a string representing the device type. Defaults to False. |
None
|
Returns:
Type | Description |
---|---|
str | device
|
str | torch.device: The current PyTorch device. If as_torch_device is True, returns a torch.device object. If as_torch_device is False, returns a string representing the device type. |
Example
get_torch_device() # Returns the current device type as a string
Source code in src/ezpz/dist.py
get_torch_device_type(device_type=None)
¶
Get the current PyTorch device type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device_type
|
str
|
The type of device to return. If None, it will be determined automatically. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The current PyTorch device type. Possible values are "cpu", "mps", "xpu", or "cuda". |
Example
get_torch_device_type() # Returns the current device type as a string
Source code in src/ezpz/dist.py
get_torch_version_as_float()
¶
Get the PyTorch version as a float.
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
The PyTorch version as a float, e.g., 1.10.0 -> 1.10 |
get_world_size(total=None, in_use=None)
¶
Get the total number of *PUs available or currently in use. Args: total (bool, optional): If True, return the total number of *PUs available. Defaults to None. in_use (bool, optional): If True, return the number of *PUs currently in use. Defaults to None.
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
The total number of *PUs available or currently in use.
If both |
Example
world_size = get_world_size(total=True) print(f"Total number of *PUs available: {world_size}") world_size_in_use = get_world_size(in_use=True) print(f"Number of *PUs currently in use: {world_size_in_use}")
Source code in src/ezpz/dist.py
get_world_size_in_use()
¶
Get number of currently in use MPI ranks
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
The number of currently in use MPI ranks. This is the size of the MPI communicator. It is the number of processes that are currently running and participating in the distributed computation. |
Example
world_size_in_use = get_world_size_in_use() print(f"Number of currently in use MPI ranks: {world_size_in_use}")
Source code in src/ezpz/dist.py
get_world_size_total()
¶
Calculate total AVAILABLE *PUs as:
total = [num_hosts] * [num_*pu_per_host]
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
The total number of available *PUs across all nodes. This is the product of the number of nodes and the number of *PUs per node. |
Example
total_pus = get_world_size_total() print(f"Total available *PUs: {total_pus}")
Source code in src/ezpz/dist.py
include_file(f)
¶
Check if a file should be included based on its extension.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
f
|
PathLike
|
The file path to check. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
True if the file should be included, False otherwise. |
Source code in src/ezpz/dist.py
init_deepspeed(dist_backend=None, auto_mpi_discovery=True, distributed_port=29500, verbose=True, timeout=None, init_method=None, dist_init_required=None, config=None, rank=None, world_size=None)
¶
Initialize DeepSpeed distributed environment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dist_backend
|
str
|
The distributed backend to use. Defaults to None. |
None
|
auto_mpi_discovery
|
bool
|
Whether to automatically discover MPI. Defaults to True. |
True
|
distributed_port
|
int | str
|
The port for distributed communication. Defaults to 29500. |
29500
|
verbose
|
bool
|
Whether to print verbose logs. Defaults to True. |
True
|
timeout
|
int | None
|
Timeout in seconds for distributed initialization. Defaults to None. |
None
|
init_method
|
str
|
Initialization method for distributed training. Defaults to None. |
None
|
dist_init_required
|
bool
|
Whether distributed initialization is required. Defaults to None. |
None
|
config
|
dict
|
DeepSpeed configuration dictionary. Defaults to None. |
None
|
rank
|
int | None
|
Rank of the current process. Defaults to None. |
None
|
world_size
|
int | None
|
Total number of processes. Defaults to None. |
None
|
Raises:
Type | Description |
---|---|
ImportError
|
If DeepSpeed is not installed. |
Exception
|
If there is an error during DeepSpeed initialization. |
Example
init_deepspeed( ... dist_backend="nccl", ... distributed_port=29500, ... verbose=True, ... timeout=3600, ... rank=0, ... world_size=4, ... )
Source code in src/ezpz/dist.py
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
|
init_process_group(rank, world_size, timeout, backend=None)
¶
Initialize the PyTorch distributed process group.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rank
|
int | str
|
The rank of the current process. |
required |
world_size
|
int | str
|
The total number of processes. |
required |
timeout
|
str | int | timedelta
|
Timeout for the process group initialization. |
required |
backend
|
str
|
The backend to use for distributed training. Defaults to None, which will use the default backend based on the device. |
None
|
Source code in src/ezpz/dist.py
log_dict_as_bulleted_list(d, name=None)
¶
Print a dict as bullets.
Source code in src/ezpz/dist.py
make_hostfile_from_slurm_env(outfile=None)
¶
Make a hostfile from the SLURM_NODELIST environment variable
Source code in src/ezpz/dist.py
print_dist_setup(framework=None, hostfile=None)
¶
Print distributed setup.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
framework
|
str
|
Framework to use. Defaults to None. |
None
|
hostfile
|
PathLike
|
Path to the hostfile. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
String containing the distributed setup. |
Source code in src/ezpz/dist.py
query_environment()
¶
Query environment variables for info about distributed setup
Returns:
Type | Description |
---|---|
dict[str, int]
|
dict[str, int]: A dictionary containing the distributed setup information.
Includes keys like 'world_size', 'rank', and 'local_rank'.
If the environment variables are not set, it falls back to using
|
Example
env_info = query_environment() print(env_info)
Source code in src/ezpz/dist.py
run_bash_command(cmd)
¶
Run a bash command and return the output. Args: cmd (str): The command to run.
Returns:
Name | Type | Description |
---|---|---|
Any |
Any
|
The output of the command. |
Source code in src/ezpz/dist.py
run_ddp(fn, world_size)
¶
Run a function in a distributed data parallel (DDP) setup.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fn
|
Callable
|
The function to run in DDP. |
required |
world_size
|
int
|
The total number of processes to run. |
required |
Source code in src/ezpz/dist.py
seed_everything(seed)
¶
Set random seed for reproducibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seed
|
int
|
Random seed to set. |
required |
Source code in src/ezpz/dist.py
setup(framework='pytorch', backend='DDP', port='5432', seed=None, precision=None, ngpus=None)
¶
Setup distributed environment for the specified framework.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
framework
|
str
|
The framework to use for distributed training. Defaults to "pytorch". |
'pytorch'
|
backend
|
str
|
The backend to use for distributed training. Defaults to "DDP". |
'DDP'
|
port
|
str
|
The port to use for distributed communication. Defaults to "5432". |
'5432'
|
seed
|
int
|
Random seed for reproducibility. Defaults to None. |
None
|
precision
|
str
|
Precision to use for training. Defaults to None. |
None
|
ngpus
|
int
|
Number of GPUs to use. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
None |
Source code in src/ezpz/dist.py
setup_tensorflow(precision=None, ngpus=None)
¶
Initialize TensorFlow + Horovod for Distributed Training
Source code in src/ezpz/dist.py
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 |
|
setup_torch(framework=None, backend=None, port=None, seed=None, timeout=None, verbose=False, tensor_parallel_size=1, pipeline_parallel_size=1, context_parallel_size=1, tensor_parallel_backend=None, pipeline_parallel_backend=None, context_parallel_backend=None, data_parallel_backend=None)
¶
Setup torch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
backend
|
str
|
Backend to use. Defaults to None. |
None
|
port
|
str | int
|
Port to use. Defaults to None. |
None
|
seed
|
int
|
Seed to use. Defaults to None. |
None
|
timeout
|
str | int
|
Timeout to use. Defaults to None. |
None
|
verbose
|
bool
|
Whether to print the info. Defaults to False. |
False
|
tensor_parallel_size
|
int
|
Tensor parallel size. Defaults to 1. |
1
|
pipeline_parallel_size
|
int
|
Pipeline parallel size. Defaults to 1. |
1
|
context_parallel_size
|
int
|
Context parallel size. Defaults to 1. |
1
|
tensor_parallel_backend
|
str
|
Tensor parallel backend. Defaults to None. |
None
|
pipeline_parallel_backend
|
str
|
Pipeline parallel backend. Defaults to None. |
None
|
context_parallel_backend
|
str
|
Context parallel backend. Defaults to None. |
None
|
data_parallel_backend
|
str
|
Data parallel backend. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
Rank of the process. |
Source code in src/ezpz/dist.py
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 |
|
setup_torch_DDP(port='2345', timeout=3600, backend=None)
¶
Setup PyTorch Distributed Data Parallel (DDP) environment. Args: port (str, optional): The port to use for distributed communication. Defaults to "2345". timeout (int | str | timedelta, optional): Timeout for the process group initialization. Defaults to 3600 seconds. backend (str, optional): The backend to use for distributed training. Defaults to None, which will use the default backend based on the device.
Returns:
Type | Description |
---|---|
dict[str, int]
|
dict[str, int]: A dictionary containing the distributed setup information. Includes keys like 'world_size', 'rank', and 'local_rank'. |
Source code in src/ezpz/dist.py
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 |
|
setup_torch_distributed(framework=None, backend=None, tensor_parallel_size=1, pipeline_parallel_size=1, context_parallel_size=1, tensor_parallel_backend=None, pipeline_parallel_backend=None, context_parallel_backend=None, data_parallel_backend=None, port=None, timeout=None)
¶
Setup distributed environment for PyTorch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
framework
|
str
|
The framework to use for distributed training. Defaults to None, which will use "ddp". |
None
|
backend
|
str
|
The backend to use for distributed training. Defaults to None, which will use the default backend based on the device. |
None
|
tensor_parallel_size
|
int
|
Size of tensor parallelism. Defaults to 1. |
1
|
pipeline_parallel_size
|
int
|
Size of pipeline parallelism. Defaults to 1. |
1
|
context_parallel_size
|
int
|
Size of context parallelism. Defaults to 1. |
1
|
tensor_parallel_backend
|
str
|
Backend for tensor parallelism. Defaults to None. |
None
|
pipeline_parallel_backend
|
str
|
Backend for pipeline parallelism. Defaults to None. |
None
|
context_parallel_backend
|
str
|
Backend for context parallelism. Defaults to None. |
None
|
data_parallel_backend
|
str
|
Backend for data parallelism. Defaults to None. |
None
|
port
|
str | int
|
Port for distributed communication. Defaults to "1234". |
None
|
timeout
|
str | int
|
Timeout for distributed initialization. Defaults to 3600 seconds. |
None
|
Returns:
Type | Description |
---|---|
dict[str, int]
|
dict[str, int]: A dictionary containing the distributed setup information. Includes keys like 'world_size', 'rank', and 'local_rank'. |
Raises:
Type | Description |
---|---|
AssertionError
|
If the framework is not one of the supported frameworks. Supported frameworks are "ddp", "ds", "deepspeed", "horovod", and "hvd". |
ValueError
|
If the backend is not one of the supported backends. Supported backends are "ddp", "ds", "deepspeed", "horovod", and "hvd". |
Example
setup_torch_distributed( ... framework="ddp", ... backend="nccl", ... tensor_parallel_size=2, ... pipeline_parallel_size=1, ... context_parallel_size=1, ... port=1234, ... timeout=3600, ... )
Source code in src/ezpz/dist.py
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 |
|
setup_wandb(project_name=None, entity=None, config=None, start_method='thread', outdir=None, init_timeout=300)
¶
Setup wandb for logging.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
project_name
|
str
|
The name of the project. Defaults to None. |
None
|
entity
|
str
|
The entity name. Defaults to None. |
None
|
config
|
dict | DictConfig
|
The configuration dictionary. Defaults to None. |
None
|
start_method
|
str
|
The start method for wandb. Defaults to "thread". |
'thread'
|
outdir
|
str | Path | PathLike
|
The output directory. Defaults to None. |
None
|
init_timeout
|
int
|
The timeout for wandb initialization. Defaults to 300. |
300
|
Example
setup_wandb(project_name="my_project", entity="my_entity")
Source code in src/ezpz/dist.py
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 |
|
synchronize(device=None)
¶
Synchronize the given device.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
device | int | str
|
The device to synchronize. If None, the default device will be used. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
None |
Source code in src/ezpz/dist.py
timeit(func)
¶
Decorator to time a function and log the time taken.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable
|
Function to be timed. |
required |
Example
@timeit def my_function(arg1, arg2): # Function implementation pass
Source code in src/ezpz/dist.py
timeitlogit(rank=None, verbose=True)
¶
Decorator to time a function and log the time taken.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rank
|
int
|
Rank of the process. Defaults to None. |
None
|
verbose
|
bool
|
Whether to log the time taken. Defaults to True. |
True
|
Example
@timeitlogit(rank=0, verbose=True) def my_function(arg1, arg2): # Function implementation pass
Source code in src/ezpz/dist.py
write_hostfile_from_list_of_hosts(hosts, hostfile=None, rank_zero_only=True)
¶
Write a list of hosts to the hostfile.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hosts
|
list[str]
|
A list of hostnames to write to the hostfile. |
required |
hostfile
|
PathLike
|
The path to the hostfile. Defaults to None. |
None
|
rank_zero_only
|
bool
|
If True, only rank 0 will write the hostfile. Defaults to True. |
True
|
Source code in src/ezpz/dist.py
write_localhost_to_hostfile(hostfile)
¶
Write 'localhost' to the hostfile